Skip to content

[Bug]:GPTQ-quantized Qwen2-VL-2B-Instruct produces poor output in vLLM but works correctly in HuggingFace transformers #18976

@arunmadhusud

Description

@arunmadhusud

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : Rocky Linux 9.4 (Blue Onyx) (x86_64)
GCC version                  : (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3)
Clang version                : Could not collect
CMake version                : Could not collect
Libc version                 : glibc-2.34

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.0+cu126
Is debug build               : False
CUDA used to build PyTorch   : 12.6
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.10.16 | packaged by conda-forge | (main, Dec  5 2024, 14:16:10) [GCC 13.3.0] (64-bit runtime)
Python platform              : Linux-3.10.0-1160.71.1.el7.x86_64-x86_64-with-glibc2.34

==============================
       CUDA [/](https://vscode-remote+ood-002ediscovery-002eneu-002eedu.vscode-resource.vscode-cdn.net/) GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : Could not collect
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : GPU 0: NVIDIA A100-SXM4-80GB
Nvidia driver version        : 545.23.08
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:        x86_64
CPU op-mode(s):      32-bit, 64-bit
Address sizes:       48 bits physical, 48 bits virtual
Byte Order:          Little Endian
CPU(s):              64
On-line CPU(s) list: 0-63
Vendor ID:           AuthenticAMD
Model name:          AMD EPYC 7543 32-Core Processor
CPU family:          25
Model:               1
Thread(s) per core:  1
Core(s) per socket:  32
Socket(s):           2
Stepping:            1
BogoMIPS:            5589.44
Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 invpcid_single hw_pstate sme retpoline_amd ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq overflow_recov succor smca
Virtualization:      AMD-V
L1d cache:           2 MiB (64 instances)
L1i cache:           2 MiB (64 instances)
L2 cache:            32 MiB (64 instances)
L3 cache:            512 MiB (16 instances)
NUMA node(s):        8
NUMA node0 CPU(s):   0-7
NUMA node1 CPU(s):   8-15
NUMA node2 CPU(s):   16-23
NUMA node3 CPU(s):   24-31
NUMA node4 CPU(s):   32-39
NUMA node5 CPU(s):   40-47
NUMA node6 CPU(s):   48-55
NUMA node7 CPU(s):   56-63

==============================
Versions of relevant libraries
==============================
[pip3] gptqmodel==2.2.0+cu121torch2.5
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] onnx==1.17.0
[pip3] onnx-simplifier==0.4.36
[pip3] onnxruntime==1.21.0
[pip3] onnxscript==0.2.2
[pip3] pyzmq==26.3.0
[pip3] torch==2.7.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.52.3
[pip3] triton==3.3.0
[conda] gptqmodel                 2.2.0+cu121torch2.5          pypi_0    pypi
[conda] numpy                     1.26.4          py310hb13e2d6_0    conda-forge
[conda] nvidia-cublas-cu12        12.6.4.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.6.80                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.6.77                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.6.77                  pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.5.1.17                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.3.0.4                 pypi_0    pypi
[conda] nvidia-cufile-cu12        1.11.1.6                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.7.77                pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.7.1.2                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.5.4.2                 pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.3                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.26.2                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.6.85                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.6.77                  pypi_0    pypi
[conda] pyzmq                     26.3.0          py310h71f11fc_0    conda-forge
[conda] torch                     2.7.0                    pypi_0    pypi
[conda] torchaudio                2.7.0                    pypi_0    pypi
[conda] torchvision               0.22.0                   pypi_0    pypi
[conda] transformers              4.52.3                   pypi_0    pypi
[conda] triton                    3.3.0                    pypi_0    pypi

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.9.0
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
  	GPU0	NIC0	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	SYS	24-31	3		N/A
NIC0	SYS	 X 				

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0

==============================
     Environment Variables
==============================
TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_madhusudhanan.a
CUDA_DEVICE_ORDER=PCI_BUS_ID
CUDA_VERSION=12.1
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
CUDA_VISIBLE_DEVICES=0
CUDA_VISIBLE_DEVICES=0
CUDA_PATH=/shared/centos7/cuda/12.1
CUDNN_VERSION=8.9.3
LD_LIBRARY_PATH=/.singularity.d/libs
CUDA_HOME=/shared/centos7/cuda/12.1
CUDA_HOME=/shared/centos7/cuda/12.1
CUDA_MODULE_LOADING=LAZY
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1

🐛 Describe the bug

I'm running into an issue where a GPTQ-quantized version of Qwen2-VL-2B-Instruct (quantized using the GPTQModel library) produces coherent results using Hugging Face's transformers, but yields poor output when used with vLLM. I have attached the inference code used in both Hugging Face and vLLM below for reproducing the output.
The interesting part is that the quantized models provided by Qwen developers (Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4) work as expected with both vLLM and HF using the same code.

Output Generated by vLLM : "user\nassistant\nuser\nassistant\nI'm sorry, but I can't assist with that."

Output Generated by HF: "['The image shows a woman sitting on a sandy beach at sunset. She is wearing a plaid shirt and is smiling as she high-fives a large dog. The dog is wearing a colorful harness and is sitting on the sand. The background features the ocean with gentle waves, and the sky is clear with a warm, golden hue from the setting sun. The overall atmosphere is serene and joyful.']"

vLLM Code :

import torch
from huggingface_hub import snapshot_download

from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams
from vllm.lora.request import LoRARequest

from typing import NamedTuple, Optional

class ModelRequestData(NamedTuple):
    engine_args: EngineArgs
    prompts: list[str]
    stop_token_ids: Optional[list[int]] = None
    lora_requests: Optional[list[LoRARequest]] = None

def run_qwen2_vl(questions: list[str], modality: str) -> ModelRequestData:

    model_name = "arunmadhusudh/Qwen2-VL-2B-Instruct-4bit-GPTQ_A100"

    engine_args = EngineArgs(
        model=model_name,
        max_model_len=4096,
        max_num_seqs=5,
        enable_lora=False,
        mm_processor_kwargs={
            "min_pixels": 28 * 28,
            "max_pixels": 1280 * 28 * 28,
        },
        quantization="gptq_marlin",
        limit_mm_per_prompt={modality: 1},
        trust_remote_code=True,
        max_seq_len_to_capture = 48000
    )

    if modality == "image":
        placeholder = "<|image_pad|>"
    elif modality == "video":
        placeholder = "<|video_pad|>"

    prompts = [
        ("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
         f"<|im_start|>user\n<|vision_start|>{placeholder}<|vision_end|>"
         f"{question}<|im_end|>\n"
         "<|im_start|>assistant\n") for question in questions
    ]

    return ModelRequestData(
        engine_args=engine_args,
        prompts=prompts,
    )

from dataclasses import asdict
from PIL import Image
import torch

from vllm import LLM, EngineArgs, SamplingParams

modality = "image"
data = Image.open("/home/madhusudhanan.a/vlms/demo.jpeg")
questions = ["What is happening in this image."]

req_data = run_qwen2_vl(questions,modality)

default_limits = {"image": 0, "video": 0, "audio": 0}
req_data.engine_args.limit_mm_per_prompt = default_limits | dict(
    req_data.engine_args.limit_mm_per_prompt or {})

engine_args = asdict(req_data.engine_args)
llm = LLM(**engine_args)

prompts = req_data.prompts
sampling_params = SamplingParams(temperature=0.2,
                                  max_tokens=128,
                                  stop_token_ids=req_data.stop_token_ids)

inputs = {
    "prompt": prompts[0],
    "multi_modal_data": {
        modality: data
    },
}

outputs = llm.generate(
    inputs,
    sampling_params=sampling_params,
    # lora_request=lora_request,
)

HF code :

from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch

model = Qwen2VLForConditionalGeneration.from_pretrained(
    "arunmadhusudh/Qwen2-VL-2B-Instruct-4bit-GPTQ_A100",
    torch_dtype=torch.float16,
    device_map="auto",
)

# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
min_pixels = 256*28*28
max_pixels = 1280*28*28
processor = AutoProcessor.from_pretrained("arunmadhusudh/Qwen2-VL-2B-Instruct-4bit-GPTQ_A100", min_pixels=min_pixels, max_pixels=max_pixels)


messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

# Preparation for inference
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions