Skip to content

[Bug]: In Version V0.9.0, Qwen3-32B-AWQ Error when turn off thinking and use guided_json simultaneously. #18821

Closed
@luoling1993

Description

@luoling1993

Your current environment

The output of python collect_env.py
==============================
        System Info
==============================
OS                           : Ubuntu 22.04.5 LTS (x86_64)
GCC version                  : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version                : Could not collect
CMake version                : version 3.22.1
Libc version                 : glibc-2.35

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.0+cu126
Is debug build               : False
CUDA used to build PyTorch   : 12.6
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.10.12 (main, Feb  4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime)
Python platform              : Linux-5.15.0-91-generic-x86_64-with-glibc2.35

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.6.85
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : GPU 0: NVIDIA A100-SXM4-80GB
Nvidia driver version        : 535.161.08
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      46 bits physical, 57 bits virtual
Byte Order:                         Little Endian
CPU(s):                             14
On-line CPU(s) list:                0-13
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz
CPU family:                         6
Model:                              106
Thread(s) per core:                 2
Core(s) per socket:                 7
Socket(s):                          1
Stepping:                           6
BogoMIPS:                           4589.21
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid md_clear arch_capabilities
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          336 KiB (7 instances)
L1i cache:                          224 KiB (7 instances)
L2 cache:                           8.8 MiB (7 instances)
L3 cache:                           54 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-13
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.52.3
[pip3] triton==3.3.0
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.9.0
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      0-13    0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
CUDA_HOME=/usr/local/cuda-12.6
CUDA_HOME=/usr/local/cuda-12.6
LD_LIBRARY_PATH=/usr/local/cuda-12.6/lib64:
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

In version V0.9.0, when using qwen3-32B-awq, if both "thinking" is turned off and guided_json is used, the temperature can only be set to 0. If set to other values, the entire service will be blocked.

service command

python -m vllm.entrypoints.openai.api_server --port 18101 --served-model-name Qwen-Text --model /data/modelscope/Qwen3-32B-AWQ --tokenizer /data/modelscope/Qwen3-32B-AWQ --max-model-len 16384 --gpu-memory-utilization 0.9

client code

from openai import OpenAI
from pydantic import BaseModel


client = OpenAI(api_key="xxx", base_url="http://127.0.0.1:18101/v1")


class OutputModel(BaseModel):
    result: int


prompt = """\
123+456等于多少?
结果以JSON格式给出:
{{
    "result": "结果"
}}
"""

# or
rsp = client.chat.completions.create(
    model="Qwen-Text",
    messages=[
        {"role": "user", "content": prompt},
    ],
    extra_body={"chat_template_kwargs": {"enable_thinking": False}, "guided_json": OutputModel.model_json_schema()},
    temperature=0,
)
print(rsp)

# service will be blocked
rsp = client.chat.completions.create(
    model="Qwen-Text",
    messages=[
        {"role": "user", "content": prompt},
    ],
    extra_body={"chat_template_kwargs": {"enable_thinking": False}, "guided_json": OutputModel.model_json_schema()},
    temperature=0.7,
)
print(rsp)

If the temperature is set to any value other than 0, the service becomes unresponsive, and nvidia-smi consistently shows this state indefinitely!
Volatile GPU-Util = 100% but Persistence-MPwr = 79W
"""
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.161.08 Driver Version: 535.161.08 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA A100-SXM4-80GB On | 00000000:65:01.0 Off | 0 |
| N/A 29C P0 79W / 400W | 77581MiB / 81920MiB | 100% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+

+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| 0 N/A N/A 902358 C /home/lucas/envs/nlp-vllm/bin/python 77572MiB |
+---------------------------------------------------------------------------------------+
"""

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions