Description
Your current environment
The output of python collect_env.py
==============================
System Info
==============================
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : version 3.22.1
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.7.0+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime)
Python platform : Linux-5.15.0-91-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.6.85
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration : GPU 0: NVIDIA A100-SXM4-80GB
Nvidia driver version : 535.161.08
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 14
On-line CPU(s) list: 0-13
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 7
Socket(s): 1
Stepping: 6
BogoMIPS: 4589.21
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid md_clear arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 336 KiB (7 instances)
L1i cache: 224 KiB (7 instances)
L2 cache: 8.8 MiB (7 instances)
L3 cache: 54 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-13
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.52.3
[pip3] triton==3.3.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.9.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-13 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
CUDA_HOME=/usr/local/cuda-12.6
CUDA_HOME=/usr/local/cuda-12.6
LD_LIBRARY_PATH=/usr/local/cuda-12.6/lib64:
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
In version V0.9.0, when using qwen3-32B-awq, if both "thinking" is turned off and guided_json is used, the temperature can only be set to 0. If set to other values, the entire service will be blocked.
service command
python -m vllm.entrypoints.openai.api_server --port 18101 --served-model-name Qwen-Text --model /data/modelscope/Qwen3-32B-AWQ --tokenizer /data/modelscope/Qwen3-32B-AWQ --max-model-len 16384 --gpu-memory-utilization 0.9
client code
from openai import OpenAI
from pydantic import BaseModel
client = OpenAI(api_key="xxx", base_url="http://127.0.0.1:18101/v1")
class OutputModel(BaseModel):
result: int
prompt = """\
123+456等于多少?
结果以JSON格式给出:
{{
"result": "结果"
}}
"""
# or
rsp = client.chat.completions.create(
model="Qwen-Text",
messages=[
{"role": "user", "content": prompt},
],
extra_body={"chat_template_kwargs": {"enable_thinking": False}, "guided_json": OutputModel.model_json_schema()},
temperature=0,
)
print(rsp)
# service will be blocked
rsp = client.chat.completions.create(
model="Qwen-Text",
messages=[
{"role": "user", "content": prompt},
],
extra_body={"chat_template_kwargs": {"enable_thinking": False}, "guided_json": OutputModel.model_json_schema()},
temperature=0.7,
)
print(rsp)
If the temperature is set to any value other than 0, the service becomes unresponsive, and nvidia-smi consistently shows this state indefinitely!
Volatile GPU-Util = 100% but Persistence-MPwr = 79W
"""
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.161.08 Driver Version: 535.161.08 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA A100-SXM4-80GB On | 00000000:65:01.0 Off | 0 |
| N/A 29C P0 79W / 400W | 77581MiB / 81920MiB | 100% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| 0 N/A N/A 902358 C /home/lucas/envs/nlp-vllm/bin/python 77572MiB |
+---------------------------------------------------------------------------------------+
"""
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.