-
-
Notifications
You must be signed in to change notification settings - Fork 9.1k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.22.1
Libc version: glibc-2.35
Python version: 3.11.11 (main, Dec 4 2024, 08:55:07) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-1077-aws-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A10G
Nvidia driver version: 535.161.07
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7R32
CPU family: 23
Model: 49
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
Stepping: 0
BogoMIPS: 5599.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save rdpid
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 128 KiB (4 instances)
L1i cache: 128 KiB (4 instances)
L2 cache: 2 MiB (4 instances)
L3 cache: 16 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-7
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy-extensions==0.4.3
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.555.43
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] optree==0.12.1
[pip3] pyzmq==23.2.0
[pip3] sentence-transformers==2.7.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torcheval==0.0.7
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.3
[pip3] triton==3.2.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.4
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-7 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NCCL_SOCKET_IFNAME=eth
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
In vllm 0.7.3
i am able to load the model from s3 using runai_streamer
. However it fails in 0.8.x
.
Below is the output of run in 0.8.4
The AWS credentials have been checked to be correct and as mentioned above it works if I change the vllm to 0.7.3 version.
!vllm --version
0.8.4
!vllm serve --port 8871 "s3://<bucket_name_redacted>/models/hf/meta-llama/Meta-Llama-3-8B-Instruct" --load-format 'runai_streamer' --served-model-name "llama3"
Stack Trace:
DEBUG 04-21 14:30:53 [__init__.py:28] No plugins for group vllm.platform_plugins found.
DEBUG 04-21 14:30:53 [__init__.py:34] Checking if TPU platform is available.
DEBUG 04-21 14:30:53 [__init__.py:44] TPU platform is not available because: No module named 'libtpu'
DEBUG 04-21 14:30:53 [__init__.py:52] Checking if CUDA platform is available.
DEBUG 04-21 14:30:53 [__init__.py:72] Confirmed CUDA platform is available.
DEBUG 04-21 14:30:53 [__init__.py:100] Checking if ROCm platform is available.
DEBUG 04-21 14:30:53 [__init__.py:114] ROCm platform is not available because: No module named 'amdsmi'
DEBUG 04-21 14:30:53 [__init__.py:122] Checking if HPU platform is available.
DEBUG 04-21 14:30:53 [__init__.py:129] HPU platform is not available because habana_frameworks is not found.
DEBUG 04-21 14:30:53 [__init__.py:140] Checking if XPU platform is available.
DEBUG 04-21 14:30:53 [__init__.py:150] XPU platform is not available because: No module named 'intel_extension_for_pytorch'
DEBUG 04-21 14:30:53 [__init__.py:158] Checking if CPU platform is available.
DEBUG 04-21 14:30:53 [__init__.py:180] Checking if Neuron platform is available.
DEBUG 04-21 14:30:53 [__init__.py:187] Neuron platform is not available because: No module named 'transformers_neuronx'
DEBUG 04-21 14:30:53 [__init__.py:52] Checking if CUDA platform is available.
DEBUG 04-21 14:30:53 [__init__.py:72] Confirmed CUDA platform is available.
INFO 04-21 14:30:53 [__init__.py:239] Automatically detected platform cuda.
2025-04-21 14:30:53.622355: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
DEBUG 04-21 14:30:56 [utils.py:135] Setting VLLM_WORKER_MULTIPROC_METHOD to 'spawn'
DEBUG 04-21 14:30:57 [__init__.py:28] No plugins for group vllm.general_plugins found.
INFO 04-21 14:30:57 [api_server.py:1034] vLLM API server version 0.8.4
INFO 04-21 14:30:57 [api_server.py:1035] args: Namespace(subparser='serve', model_tag='s3://<bucket_name_redacted>/models/hf/meta-llama/Meta-Llama-3-8B-Instruct', config='', host=None, port=8871, uvicorn_log_level='info', disable_uvicorn_access_log=False, allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='s3://<bucket_name_redacted>/models/hf/meta-llama/Meta-Llama-3-8B-Instruct', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, load_format='runai_streamer', download_dir=None, model_loader_extra_config=None, use_tqdm_on_load=True, config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=None, guided_decoding_backend='auto', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=1, data_parallel_size=1, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, disable_custom_all_reduce=False, block_size=None, enable_prefix_caching=None, prefix_caching_hash_algo='builtin', disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=None, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_token=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=['llama3'], qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, enable_reasoning=False, reasoning_parser=None, disable_cascade_attn=False, disable_chunked_mm_input=False, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False, dispatch_function=<function ServeSubcommand.cmd at 0x7f404c957c40>)
INFO 04-21 14:33:00 [config.py:689] This model supports multiple tasks: {'reward', 'classify', 'generate', 'score', 'embed'}. Defaulting to 'generate'.
DEBUG 04-21 14:33:01 [arg_utils.py:1689] Setting max_num_batched_tokens to 2048 for OPENAI_API_SERVER usage context.
DEBUG 04-21 14:33:01 [arg_utils.py:1696] Setting max_num_seqs to 256 for OPENAI_API_SERVER usage context.
INFO 04-21 14:33:01 [config.py:1901] Chunked prefill is enabled with max_num_batched_tokens=2048.
Traceback (most recent call last):
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/bin/vllm", line 8, in <module>
sys.exit(main())
^^^^^^
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/lib/python3.11/site-packages/vllm/entrypoints/cli/main.py", line 51, in main
args.dispatch_function(args)
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/lib/python3.11/site-packages/vllm/entrypoints/cli/serve.py", line 27, in cmd
uvloop.run(run_server(args))
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/lib/python3.11/site-packages/uvloop/__init__.py", line 105, in run
return runner.run(wrapper())
^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib/python3.11/asyncio/runners.py", line 118, in run
return self._loop.run_until_complete(task)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/lib/python3.11/site-packages/uvloop/__init__.py", line 61, in wrapper
return await main
^^^^^^^^^^
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/lib/python3.11/site-packages/vllm/entrypoints/openai/api_server.py", line 1069, in run_server
async with build_async_engine_client(args) as engine_client:
File "/usr/lib/python3.11/contextlib.py", line 210, in __aenter__
return await anext(self.gen)
^^^^^^^^^^^^^^^^^^^^^
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/lib/python3.11/site-packages/vllm/entrypoints/openai/api_server.py", line 146, in build_async_engine_client
async with build_async_engine_client_from_engine_args(
File "/usr/lib/python3.11/contextlib.py", line 210, in __aenter__
return await anext(self.gen)
^^^^^^^^^^^^^^^^^^^^^
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/lib/python3.11/site-packages/vllm/entrypoints/openai/api_server.py", line 178, in build_async_engine_client_from_engine_args
async_llm = AsyncLLM.from_vllm_config(
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/lib/python3.11/site-packages/vllm/v1/engine/async_llm.py", line 136, in from_vllm_config
return cls(
^^^^
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/lib/python3.11/site-packages/vllm/v1/engine/async_llm.py", line 102, in __init__
self.engine_core = EngineCoreClient.make_client(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/lib/python3.11/site-packages/vllm/v1/engine/core_client.py", line 71, in make_client
return AsyncMPClient(vllm_config, executor_class, log_stats)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/lib/python3.11/site-packages/vllm/v1/engine/core_client.py", line 604, in __init__
super().__init__(
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-868714d9-bd26-4088-b37a-c5d2812b0d94/lib/python3.11/site-packages/vllm/v1/engine/core_client.py", line 378, in __init__
self.ctx = zmq.asyncio.Context(sync_ctx) if asyncio_mode else sync_ctx
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/databricks/python/lib/python3.11/site-packages/zmq/sugar/context.py", line 51, in __init__
super().__init__(io_threads=io_threads, **kwargs)
File "zmq/backend/cython/context.pyx", line 37, in zmq.backend.cython.context.Context.__init__
TypeError: an integer is required
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working