Skip to content

[Bug]: The Transformers implementation of My Model is not compatible with vLLM. #16826

Closed as not planned
@SnowCharmQ

Description

@SnowCharmQ

Your current environment

The output of `python collect_env.py`
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.22.1
Libc version: glibc-2.35

Python version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-136-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA H100 NVL
  MIG 3g.47gb     Device  0:

Nvidia driver version: 555.42.02
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        52 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               128
On-line CPU(s) list:                  0-127
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 9334 32-Core Processor
CPU family:                           25
Model:                                17
Thread(s) per core:                   2
Core(s) per socket:                   32
Socket(s):                            2
Stepping:                             1
Frequency boost:                      enabled
CPU max MHz:                          2700.0000
CPU min MHz:                          1500.0000
BogoMIPS:                             5391.40
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d
Virtualization:                       AMD-V
L1d cache:                            2 MiB (64 instances)
L1i cache:                            2 MiB (64 instances)
L2 cache:                             64 MiB (64 instances)
L3 cache:                             256 MiB (8 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0-31,64-95
NUMA node1 CPU(s):                    32-63,96-127
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Mitigation; safe RET
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==2.2.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.3
[pip3] triton==3.2.0
[conda] numpy                     2.2.4                    pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.2                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pyzmq                     26.4.0                   pypi_0    pypi
[conda] torch                     2.6.0                    pypi_0    pypi
[conda] torchaudio                2.6.0                    pypi_0    pypi
[conda] torchvision               0.21.0                   pypi_0    pypi
[conda] transformers              4.51.3                   pypi_0    pypi
[conda] triton                    3.2.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.4
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      32-39,96-103    1               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

CUDA_VISIBLE_DEVICES=0
CUDA_VISIBLE_DEVICES=0
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

Hi there,

I saw the post from X (https://x.com/vllm_project/status/1912958639633277218) that the vllm library currently supports self-implemented transformers models. This is an amazing progress and I think it is pretty important. However, when I try to use this function with the latest vllm library and refer to the huggingface/transformers#36934 to update my model accordingly, it seems that my model is still not compatible with vllm. My model is provided as follows:

import os
import re
import torch
import torch.nn as nn

from torch.nn import CrossEntropyLoss
from typing import Optional, List, Tuple, Union
from transformers import Qwen2ForCausalLM, PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast


HIDDEN_SIZE = 1536
MULT_K = 4

class Qwen2ForCausalPersonalLM(Qwen2ForCausalLM):
    _supports_attention_backend = True

    def __init__(self, config, **kwargs):
        super().__init__(config, **kwargs)
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.align_mlp_his = nn.Sequential(nn.Linear(HIDDEN_SIZE, config.hidden_size * MULT_K), 
                                        nn.GELU(), 
                                        nn.Linear(config.hidden_size * MULT_K, config.hidden_size))
        self.align_mlp_his.to_empty(device=device)

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        num_logits_to_keep: int = 0,
        his_emb: Optional[torch.FloatTensor] = None,
        **kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        inputs_embs = self.model.get_input_embeddings()(input_ids)

        his_emb = his_emb / (his_emb.norm(dim=-1, keepdim=True) + 1e-6)
        his_emb = self.align_mlp_his(his_emb)

        if his_emb is not None:
            his_emb_len = his_emb.shape[1]
            for bidx in range(inputs_embs.shape[0]):
                new_tokens = [f"[HIS_TOKEN_{i}]" for i in range(his_emb_len)]
                token_ids = self.llm_tokenizer.convert_tokens_to_ids(new_tokens)
                b_his_emb = his_emb[bidx]
                for i in range(his_emb_len):
                    pemb = b_his_emb[i, :]
                    inputs_embs[bidx][input_ids[bidx] == token_ids[i]] = pemb.to(inputs_embs.dtype)

        outputs = self.model(
            inputs_embeds=inputs_embs,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]).float()

        loss = None
        if labels is not None:
            logits = logits.float()
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
    
    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        val: bool = False,
        **kwargs,
    ):
        model = super().from_pretrained(pretrained_model_name_or_path, 
                                        *model_args, 
                                        config=config, 
                                        cache_dir=cache_dir, 
                                        ignore_mismatched_sizes=ignore_mismatched_sizes, 
                                        force_download=force_download, 
                                        local_files_only=local_files_only, 
                                        token=token, revision=revision, 
                                        use_safetensors=use_safetensors)
        model.llm_tokenizer = kwargs.get("tokenizer", None)
        if not val:
            for layer in model.align_mlp_his:
                if isinstance(layer, nn.Linear):
                    torch.nn.init.xavier_uniform_(layer.weight)
                    if layer.bias is not None:
                        torch.nn.init.zeros_(layer.bias)
        return model

I really need your help, thanks!

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

Labels

bugSomething isn't working

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions