Skip to content

[Bug] [Misc]: test_sharded_state_loader run failed #16004

Closed
@Accelerator1996

Description

@Accelerator1996

Your current environment

The output of `python collect_env.py`
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Alibaba Cloud Linux 3.2304 (Soaring Falcon) (x86_64)
GCC version: (GCC) 12.2.1 20221121 (Alibaba Cloud Linux 12.2.1-3)
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.36

Python version: 3.10.13+gc (main, Jul 17 2024, 02:40:04) [GCC 12.2.1 20221121 (Alibaba Cloud Linux 12.2.1-3)] (64-bit runtime)
Python platform: Linux-6.8.0-53-generic-x86_64-with-glibc2.36
Is CUDA available: True
CUDA runtime version: 12.6.68
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A10
GPU 1: NVIDIA A10
GPU 2: NVIDIA A10
GPU 3: NVIDIA A10

Nvidia driver version: 570.124.06
cuDNN version: Probably one of the following:
/usr/lib64/libcudnn.so.9.4.0
/usr/lib64/libcudnn_adv.so.9.4.0
/usr/lib64/libcudnn_cnn.so.9.4.0
/usr/lib64/libcudnn_engines_precompiled.so.9.4.0
/usr/lib64/libcudnn_engines_runtime_compiled.so.9.4.0
/usr/lib64/libcudnn_graph.so.9.4.0
/usr/lib64/libcudnn_heuristic.so.9.4.0
/usr/lib64/libcudnn_ops.so.9.4.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        46 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               128
On-line CPU(s) list:                  0-127
Vendor ID:                            GenuineIntel
BIOS Vendor ID:                       Alibaba Cloud
Model name:                           Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz
BIOS Model name:                      pc-i440fx-2.1  CPU @ 0.0GHz
BIOS CPU family:                      1
CPU family:                           6
Model:                                106
Thread(s) per core:                   2
Core(s) per socket:                   32
Socket(s):                            2
Stepping:                             6
BogoMIPS:                             5799.99
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm arch_capabilities
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            3 MiB (64 instances)
L1i cache:                            2 MiB (64 instances)
L2 cache:                             80 MiB (64 instances)
L3 cache:                             96 MiB (2 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0-63
NUMA node1 CPU(s):                    64-127
Vulnerability Gather data sampling:   Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.3.0
[pip3] sentence-transformers==3.2.1
[pip3] torch==2.6.0
[pip3] torch-xla==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.50.3
[pip3] transformers-stream-generator==0.0.5
[pip3] triton==3.2.0
[pip3] tritonclient==2.51.0
[pip3] vector-quantize-pytorch==1.21.2
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0	GPU1	GPU2	GPU3	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	PHB	PHB	PHB	0-127	0-1		N/A
GPU1	PHB	 X 	PHB	PHB	0-127	0-1		N/A
GPU2	PHB	PHB	 X 	PHB	0-127	0-1		N/A
GPU3	PHB	PHB	PHB	 X 	0-127	0-1		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.6 brand=unknown,driver>=470,driver<471 brand=grid,driver>=470,driver<471 brand=tesla,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=vapps,driver>=470,driver<471 brand=vpc,driver>=470,driver<471 brand=vcs,driver>=470,driver<471 brand=vws,driver>=470,driver<471 brand=cloudgaming,driver>=470,driver<471 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551
NCCL_VERSION=2.22.3
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
CUDA_VERSION=12.6.1
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

When I run test command VLLM_USE_V1=0 VLLM_WORKER_MULTIPROC_METHOD=spawn pytest -s -v test_sharded_state_loader.py::test_sharded_state_loader, it failed. The actual reason is the problem of metadata file copying, and I think it is unreasonable to repeatedly download the model in the temporary directory.

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions