Closed
Description
Your current environment
The output of `python collect_env.py`
INFO 03-18 10:28:31 [__init__.py:256] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.25.0
Libc version: glibc-2.35
Python version: 3.12.9 | packaged by Anaconda, Inc. | (main, Feb 6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.6.85
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 4090
GPU 1: NVIDIA GeForce RTX 4090
GPU 2: NVIDIA GeForce RTX 4090
GPU 3: NVIDIA GeForce RTX 4090
Nvidia driver version: 560.94
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.6.0
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn.so.8.9.7
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.7
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.7
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.7
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.7
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.7
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.7
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Gold 6430
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 1
Stepping: 8
BogoMIPS: 4200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 avx512vbmi umip waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk arch_lbr avx512_fp16 flush_l1d arch_capabilities
Virtualization: VT-x
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 3 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 128 MiB (64 instances)
L3 cache: 60 MiB (1 instance)
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.3.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.50.0.dev0
[pip3] triton==3.2.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pyzmq 26.3.0 pypi_0 pypi
[conda] torch 2.6.0 pypi_0 pypi
[conda] torchaudio 2.6.0 pypi_0 pypi
[conda] torchvision 0.21.0 pypi_0 pypi
[conda] transformers 4.50.0.dev0 pypi_0 pypi
[conda] triton 3.2.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.4.dev474+g3556a414
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X SYS SYS SYS N/A
GPU1 SYS X SYS SYS N/A
GPU2 SYS SYS X SYS N/A
GPU3 SYS SYS SYS X N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NCCL_P2P_DISABLE=1
CUDA_DEVICE_ORDER=PCI_BUS_ID
CUDA_VISIBLE_DEVICES=3,1,0
CUDA_VISIBLE_DEVICES=3,1,0
LD_LIBRARY_PATH=/usr/local/cuda-12.6/lib64:
NCCL_IB_DISABLE=1
CUDA_HOME=/usr/local/cuda-12.6
CUDA_HOME=/usr/local/cuda-12.6
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
how to product:
run vllm serve,
vllm serve /root/HuggingFaceCache/models--google--gemma-3-27b-it --trust-remote-code --served-model-name gpt-4o --gpu-memory-utilization 0.99 --tensor-parallel-size 4 --port 8000 --api-key sk-123456 --max-model-len 32768 --enable-chunked-prefill --limit-mm-per-prompt image=3
error log:
INFO 03-18 10:21:18 [__init__.py:256] Automatically detected platform cuda.
INFO 03-18 10:21:20 [api_server.py:966] vLLM API server version 0.7.4.dev474+g3556a414
INFO 03-18 10:21:20 [api_server.py:967] args: Namespace(subparser='serve', model_tag='/root/HuggingFaceCache/models--google--gemma-3-27b-it', config='', host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key='sk-123456', lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='/root/HuggingFaceCache/models--google--gemma-3-27b-it', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=32768, guided_decoding_backend='xgrammar', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=4, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=None, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=None, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.99, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt={'image': 3}, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, use_tqdm_on_load=True, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=True, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=['gpt-4o'], qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, enable_reasoning=False, reasoning_parser=None, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False, dispatch_function=<function ServeSubcommand.cmd at 0x7f8e7a3d1bc0>)
INFO 03-18 10:21:20 [config.py:2521] For Gemma 2 and 3, we downcast float32 to bfloat16 instead of float16 by default. Please specify `dtype` if you want to use float16.
INFO 03-18 10:21:20 [config.py:2579] Downcasting torch.float32 to torch.bfloat16.
INFO 03-18 10:21:26 [config.py:583] This model supports multiple tasks: {'score', 'generate', 'classify', 'reward', 'embed'}. Defaulting to 'generate'.
INFO 03-18 10:21:27 [config.py:1499] Defaulting to use mp for distributed inference
INFO 03-18 10:21:27 [config.py:1677] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 03-18 10:21:33 [__init__.py:256] Automatically detected platform cuda.
INFO 03-18 10:21:35 [core.py:53] Initializing a V1 LLM engine (v0.7.4.dev474+g3556a414) with config: model='/root/HuggingFaceCache/models--google--gemma-3-27b-it', speculative_config=None, tokenizer='/root/HuggingFaceCache/models--google--gemma-3-27b-it', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.bfloat16, max_seq_len=32768, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=4, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=gpt-4o, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"level":3,"custom_ops":["none"],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"use_inductor":true,"compile_sizes":[],"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":512}
WARNING 03-18 10:21:35 [multiproc_worker_utils.py:310] Reducing Torch parallelism from 64 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed.
INFO 03-18 10:21:35 [custom_cache_manager.py:19] Setting Triton cache manager to: vllm.triton_utils.custom_cache_manager:CustomCacheManager
INFO 03-18 10:21:35 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0, 1, 2, 3], buffer_handle=(4, 10485760, 10, 'psm_bea7a810'), local_subscribe_addr='ipc:///tmp/8470ae2e-a8ed-4ce6-8d2f-c9bab3efae29', remote_subscribe_addr=None, remote_addr_ipv6=False)
INFO 03-18 10:21:38 [__init__.py:256] Automatically detected platform cuda.
WARNING 03-18 10:21:41 [utils.py:2282] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7febc2321280>
(VllmWorker rank=0 pid=903349) INFO 03-18 10:21:41 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_bc5ca0ca'), local_subscribe_addr='ipc:///tmp/35fd9a76-e96b-4512-87d3-f43e50b0a70e', remote_subscribe_addr=None, remote_addr_ipv6=False)
INFO 03-18 10:21:45 [__init__.py:256] Automatically detected platform cuda.
WARNING 03-18 10:21:47 [utils.py:2282] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7fcda94fb860>
(VllmWorker rank=1 pid=903752) INFO 03-18 10:21:47 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_88bac3ba'), local_subscribe_addr='ipc:///tmp/34354183-bd2a-4958-afa5-d4b985115f84', remote_subscribe_addr=None, remote_addr_ipv6=False)
INFO 03-18 10:21:50 [__init__.py:256] Automatically detected platform cuda.
WARNING 03-18 10:21:53 [utils.py:2282] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7f61327717c0>
(VllmWorker rank=2 pid=904143) INFO 03-18 10:21:53 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_5299412c'), local_subscribe_addr='ipc:///tmp/3baeb637-c2de-491d-9c4d-a9cd8fe7ed09', remote_subscribe_addr=None, remote_addr_ipv6=False)
INFO 03-18 10:21:56 [__init__.py:256] Automatically detected platform cuda.
WARNING 03-18 10:21:59 [utils.py:2282] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7f964d721cd0>
(VllmWorker rank=3 pid=904497) INFO 03-18 10:21:59 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_1ef6a97a'), local_subscribe_addr='ipc:///tmp/8a556fb4-4813-4dd8-8777-f3311fc2aa69', remote_subscribe_addr=None, remote_addr_ipv6=False)
(VllmWorker rank=1 pid=903752) INFO 03-18 10:22:00 [utils.py:925] Found nccl from library libnccl.so.2
(VllmWorker rank=1 pid=903752) INFO 03-18 10:22:00 [pynccl.py:69] vLLM is using nccl==2.21.5
(VllmWorker rank=0 pid=903349) INFO 03-18 10:22:00 [utils.py:925] Found nccl from library libnccl.so.2
(VllmWorker rank=0 pid=903349) INFO 03-18 10:22:00 [pynccl.py:69] vLLM is using nccl==2.21.5
(VllmWorker rank=3 pid=904497) INFO 03-18 10:22:00 [utils.py:925] Found nccl from library libnccl.so.2
(VllmWorker rank=3 pid=904497) INFO 03-18 10:22:00 [pynccl.py:69] vLLM is using nccl==2.21.5
(VllmWorker rank=2 pid=904143) INFO 03-18 10:22:00 [utils.py:925] Found nccl from library libnccl.so.2
(VllmWorker rank=2 pid=904143) INFO 03-18 10:22:00 [pynccl.py:69] vLLM is using nccl==2.21.5
(VllmWorker rank=3 pid=904497) WARNING 03-18 10:22:01 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.
(VllmWorker rank=2 pid=904143) WARNING 03-18 10:22:01 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.
(VllmWorker rank=0 pid=903349) WARNING 03-18 10:22:01 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.
(VllmWorker rank=1 pid=903752) WARNING 03-18 10:22:01 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.
(VllmWorker rank=0 pid=903349) INFO 03-18 10:22:01 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[1, 2, 3], buffer_handle=(3, 4194304, 6, 'psm_4c674e73'), local_subscribe_addr='ipc:///tmp/329e55a3-aff6-4711-a5bd-37cb00742a7d', remote_subscribe_addr=None, remote_addr_ipv6=False)
(VllmWorker rank=0 pid=903349) INFO 03-18 10:22:01 [parallel_state.py:948] rank 0 in world size 4 is assigned as DP rank 0, PP rank 0, TP rank 0
(VllmWorker rank=0 pid=903349) WARNING 03-18 10:22:01 [interface.py:305] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorker rank=0 pid=903349) INFO 03-18 10:22:01 [cuda.py:215] Using Flash Attention backend on V1 engine.
(VllmWorker rank=2 pid=904143) INFO 03-18 10:22:01 [parallel_state.py:948] rank 2 in world size 4 is assigned as DP rank 0, PP rank 0, TP rank 2
(VllmWorker rank=1 pid=903752) INFO 03-18 10:22:01 [parallel_state.py:948] rank 1 in world size 4 is assigned as DP rank 0, PP rank 0, TP rank 1
(VllmWorker rank=2 pid=904143) WARNING 03-18 10:22:01 [interface.py:305] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorker rank=1 pid=903752) WARNING 03-18 10:22:01 [interface.py:305] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorker rank=2 pid=904143) INFO 03-18 10:22:01 [cuda.py:215] Using Flash Attention backend on V1 engine.
(VllmWorker rank=3 pid=904497) INFO 03-18 10:22:01 [parallel_state.py:948] rank 3 in world size 4 is assigned as DP rank 0, PP rank 0, TP rank 3
(VllmWorker rank=1 pid=903752) INFO 03-18 10:22:01 [cuda.py:215] Using Flash Attention backend on V1 engine.
(VllmWorker rank=3 pid=904497) WARNING 03-18 10:22:01 [interface.py:305] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorker rank=3 pid=904497) INFO 03-18 10:22:01 [cuda.py:215] Using Flash Attention backend on V1 engine.
(VllmWorker rank=0 pid=903349) Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
(VllmWorker rank=3 pid=904497) Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
(VllmWorker rank=2 pid=904143) Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
(VllmWorker rank=1 pid=903752) Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
(VllmWorker rank=2 pid=904143) INFO 03-18 10:22:07 [gpu_model_runner.py:1112] Starting to load model /root/HuggingFaceCache/models--google--gemma-3-27b-it...
(VllmWorker rank=0 pid=903349) INFO 03-18 10:22:07 [gpu_model_runner.py:1112] Starting to load model /root/HuggingFaceCache/models--google--gemma-3-27b-it...
(VllmWorker rank=3 pid=904497) INFO 03-18 10:22:07 [gpu_model_runner.py:1112] Starting to load model /root/HuggingFaceCache/models--google--gemma-3-27b-it...
(VllmWorker rank=2 pid=904143) INFO 03-18 10:22:07 [config.py:3206] cudagraph sizes specified by model runner [1, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432, 440, 448, 456, 464, 472, 480, 488, 496, 504, 512] is overridden by config [512, 384, 256, 128, 4, 2, 1, 392, 264, 136, 8, 400, 272, 144, 16, 408, 280, 152, 24, 416, 288, 160, 32, 424, 296, 168, 40, 432, 304, 176, 48, 440, 312, 184, 56, 448, 320, 192, 64, 456, 328, 200, 72, 464, 336, 208, 80, 472, 344, 216, 88, 120, 480, 352, 248, 224, 96, 488, 504, 360, 232, 104, 496, 368, 240, 112, 376]
(VllmWorker rank=0 pid=903349) INFO 03-18 10:22:07 [config.py:3206] cudagraph sizes specified by model runner [1, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432, 440, 448, 456, 464, 472, 480, 488, 496, 504, 512] is overridden by config [512, 384, 256, 128, 4, 2, 1, 392, 264, 136, 8, 400, 272, 144, 16, 408, 280, 152, 24, 416, 288, 160, 32, 424, 296, 168, 40, 432, 304, 176, 48, 440, 312, 184, 56, 448, 320, 192, 64, 456, 328, 200, 72, 464, 336, 208, 80, 472, 344, 216, 88, 120, 480, 352, 248, 224, 96, 488, 504, 360, 232, 104, 496, 368, 240, 112, 376]
(VllmWorker rank=3 pid=904497) INFO 03-18 10:22:07 [config.py:3206] cudagraph sizes specified by model runner [1, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432, 440, 448, 456, 464, 472, 480, 488, 496, 504, 512] is overridden by config [512, 384, 256, 128, 4, 2, 1, 392, 264, 136, 8, 400, 272, 144, 16, 408, 280, 152, 24, 416, 288, 160, 32, 424, 296, 168, 40, 432, 304, 176, 48, 440, 312, 184, 56, 448, 320, 192, 64, 456, 328, 200, 72, 464, 336, 208, 80, 472, 344, 216, 88, 120, 480, 352, 248, 224, 96, 488, 504, 360, 232, 104, 496, 368, 240, 112, 376]
(VllmWorker rank=1 pid=903752) INFO 03-18 10:22:07 [gpu_model_runner.py:1112] Starting to load model /root/HuggingFaceCache/models--google--gemma-3-27b-it...
(VllmWorker rank=1 pid=903752) INFO 03-18 10:22:08 [config.py:3206] cudagraph sizes specified by model runner [1, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432, 440, 448, 456, 464, 472, 480, 488, 496, 504, 512] is overridden by config [512, 384, 256, 128, 4, 2, 1, 392, 264, 136, 8, 400, 272, 144, 16, 408, 280, 152, 24, 416, 288, 160, 32, 424, 296, 168, 40, 432, 304, 176, 48, 440, 312, 184, 56, 448, 320, 192, 64, 456, 328, 200, 72, 464, 336, 208, 80, 472, 344, 216, 88, 120, 480, 352, 248, 224, 96, 488, 504, 360, 232, 104, 496, 368, 240, 112, 376]
(VllmWorker rank=2 pid=904143) WARNING 03-18 10:22:08 [topk_topp_sampler.py:63] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
(VllmWorker rank=3 pid=904497) WARNING 03-18 10:22:08 [topk_topp_sampler.py:63] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
(VllmWorker rank=0 pid=903349) WARNING 03-18 10:22:08 [topk_topp_sampler.py:63] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
Loading safetensors checkpoint shards: 0% Completed | 0/12 [00:00<?, ?it/s]
(VllmWorker rank=1 pid=903752) WARNING 03-18 10:22:09 [topk_topp_sampler.py:63] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
Loading safetensors checkpoint shards: 8% Completed | 1/12 [00:03<00:34, 3.18s/it]
Loading safetensors checkpoint shards: 17% Completed | 2/12 [00:06<00:32, 3.27s/it]
Loading safetensors checkpoint shards: 25% Completed | 3/12 [00:09<00:29, 3.33s/it]
Loading safetensors checkpoint shards: 33% Completed | 4/12 [00:13<00:26, 3.32s/it]
Loading safetensors checkpoint shards: 42% Completed | 5/12 [00:16<00:23, 3.33s/it]
Loading safetensors checkpoint shards: 50% Completed | 6/12 [00:19<00:18, 3.07s/it]
Loading safetensors checkpoint shards: 58% Completed | 7/12 [00:19<00:11, 2.21s/it]
Loading safetensors checkpoint shards: 67% Completed | 8/12 [00:22<00:10, 2.55s/it]
Loading safetensors checkpoint shards: 75% Completed | 9/12 [00:26<00:08, 2.81s/it]
Loading safetensors checkpoint shards: 83% Completed | 10/12 [00:29<00:06, 3.03s/it]
Loading safetensors checkpoint shards: 92% Completed | 11/12 [00:33<00:03, 3.12s/it]
Loading safetensors checkpoint shards: 100% Completed | 12/12 [00:36<00:00, 3.24s/it]
Loading safetensors checkpoint shards: 100% Completed | 12/12 [00:36<00:00, 3.05s/it]
(VllmWorker rank=0 pid=903349)
(VllmWorker rank=2 pid=904143) INFO 03-18 10:22:45 [loader.py:429] Loading weights took 36.77 seconds
(VllmWorker rank=0 pid=903349) INFO 03-18 10:22:45 [loader.py:429] Loading weights took 36.76 seconds
(VllmWorker rank=1 pid=903752) INFO 03-18 10:22:45 [loader.py:429] Loading weights took 36.73 seconds
(VllmWorker rank=3 pid=904497) INFO 03-18 10:22:45 [loader.py:429] Loading weights took 36.91 seconds
(VllmWorker rank=2 pid=904143) INFO 03-18 10:22:45 [gpu_model_runner.py:1124] Model loading took 13.1666 GB and 37.816293 seconds
(VllmWorker rank=3 pid=904497) INFO 03-18 10:22:46 [gpu_model_runner.py:1124] Model loading took 13.1666 GB and 37.926920 seconds
(VllmWorker rank=0 pid=903349) INFO 03-18 10:22:46 [gpu_model_runner.py:1124] Model loading took 13.1666 GB and 37.939645 seconds
(VllmWorker rank=1 pid=903752) INFO 03-18 10:22:46 [gpu_model_runner.py:1124] Model loading took 13.1666 GB and 37.823492 seconds
(VllmWorker rank=1 pid=903752) INFO 03-18 10:22:46 [gpu_model_runner.py:1342] Encoder cache will be initialized with a budget of 2048 tokens, and profiled with 8 image items of the maximum feature size.
(VllmWorker rank=3 pid=904497) INFO 03-18 10:22:46 [gpu_model_runner.py:1342] Encoder cache will be initialized with a budget of 2048 tokens, and profiled with 8 image items of the maximum feature size.
(VllmWorker rank=2 pid=904143) INFO 03-18 10:22:46 [gpu_model_runner.py:1342] Encoder cache will be initialized with a budget of 2048 tokens, and profiled with 8 image items of the maximum feature size.
(VllmWorker rank=0 pid=903349) INFO 03-18 10:22:46 [gpu_model_runner.py:1342] Encoder cache will be initialized with a budget of 2048 tokens, and profiled with 8 image items of the maximum feature size.
(VllmWorker rank=0 pid=903349) INFO 03-18 10:23:14 [backends.py:409] Using cache directory: /root/.cache/vllm/torch_compile_cache/e114398272/rank_0_0 for vLLM's torch.compile
(VllmWorker rank=0 pid=903349) INFO 03-18 10:23:14 [backends.py:419] Dynamo bytecode transform time: 19.84 s
(VllmWorker rank=1 pid=903752) INFO 03-18 10:23:14 [backends.py:409] Using cache directory: /root/.cache/vllm/torch_compile_cache/e114398272/rank_1_0 for vLLM's torch.compile
(VllmWorker rank=1 pid=903752) INFO 03-18 10:23:14 [backends.py:419] Dynamo bytecode transform time: 19.89 s
(VllmWorker rank=3 pid=904497) INFO 03-18 10:23:14 [backends.py:409] Using cache directory: /root/.cache/vllm/torch_compile_cache/e114398272/rank_3_0 for vLLM's torch.compile
(VllmWorker rank=3 pid=904497) INFO 03-18 10:23:14 [backends.py:419] Dynamo bytecode transform time: 19.94 s
(VllmWorker rank=2 pid=904143) INFO 03-18 10:23:14 [backends.py:409] Using cache directory: /root/.cache/vllm/torch_compile_cache/e114398272/rank_2_0 for vLLM's torch.compile
(VllmWorker rank=2 pid=904143) INFO 03-18 10:23:14 [backends.py:419] Dynamo bytecode transform time: 20.09 s
(VllmWorker rank=0 pid=903349) INFO 03-18 10:23:20 [backends.py:132] Cache the graph of shape None for later use
(VllmWorker rank=1 pid=903752) INFO 03-18 10:23:20 [backends.py:132] Cache the graph of shape None for later use
(VllmWorker rank=3 pid=904497) INFO 03-18 10:23:20 [backends.py:132] Cache the graph of shape None for later use
(VllmWorker rank=2 pid=904143) INFO 03-18 10:23:20 [backends.py:132] Cache the graph of shape None for later use
(VllmWorker rank=3 pid=904497) INFO 03-18 10:24:38 [backends.py:144] Compiling a graph for general shape takes 83.08 s
(VllmWorker rank=0 pid=903349) INFO 03-18 10:24:38 [backends.py:144] Compiling a graph for general shape takes 83.30 s
(VllmWorker rank=1 pid=903752) INFO 03-18 10:24:39 [backends.py:144] Compiling a graph for general shape takes 83.66 s
(VllmWorker rank=2 pid=904143) INFO 03-18 10:24:39 [backends.py:144] Compiling a graph for general shape takes 83.82 s
(VllmWorker rank=3 pid=904497) INFO 03-18 10:25:35 [monitor.py:33] torch.compile takes 103.02 s in total
(VllmWorker rank=2 pid=904143) INFO 03-18 10:25:35 [monitor.py:33] torch.compile takes 103.91 s in total
(VllmWorker rank=1 pid=903752) INFO 03-18 10:25:35 [monitor.py:33] torch.compile takes 103.55 s in total
(VllmWorker rank=0 pid=903349) INFO 03-18 10:25:35 [monitor.py:33] torch.compile takes 103.14 s in total
ERROR 03-18 10:25:43 [core.py:337] EngineCore hit an exception: Traceback (most recent call last):
ERROR 03-18 10:25:43 [core.py:337] File "/root/myvllm/vllm_main_oom/vllm/v1/engine/core.py", line 329, in run_engine_core
ERROR 03-18 10:25:43 [core.py:337] engine_core = EngineCoreProc(*args, **kwargs)
ERROR 03-18 10:25:43 [core.py:337] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-18 10:25:43 [core.py:337] File "/root/myvllm/vllm_main_oom/vllm/v1/engine/core.py", line 284, in __init__
ERROR 03-18 10:25:43 [core.py:337] super().__init__(vllm_config, executor_class, log_stats)
ERROR 03-18 10:25:43 [core.py:337] File "/root/myvllm/vllm_main_oom/vllm/v1/engine/core.py", line 62, in __init__
ERROR 03-18 10:25:43 [core.py:337] num_gpu_blocks, num_cpu_blocks = self._initialize_kv_caches(
ERROR 03-18 10:25:43 [core.py:337] ^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-18 10:25:43 [core.py:337] File "/root/myvllm/vllm_main_oom/vllm/v1/engine/core.py", line 124, in _initialize_kv_caches
ERROR 03-18 10:25:43 [core.py:337] kv_cache_configs = get_kv_cache_configs(vllm_config, kv_cache_specs,
ERROR 03-18 10:25:43 [core.py:337] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-18 10:25:43 [core.py:337] File "/root/myvllm/vllm_main_oom/vllm/v1/core/kv_cache_utils.py", line 576, in get_kv_cache_configs
ERROR 03-18 10:25:43 [core.py:337] check_enough_kv_cache_memory(vllm_config, kv_cache_spec,
ERROR 03-18 10:25:43 [core.py:337] File "/root/myvllm/vllm_main_oom/vllm/v1/core/kv_cache_utils.py", line 468, in check_enough_kv_cache_memory
ERROR 03-18 10:25:43 [core.py:337] raise ValueError("No available memory for the cache blocks. "
ERROR 03-18 10:25:43 [core.py:337] ValueError: No available memory for the cache blocks. Try increasing `gpu_memory_utilization` when initializing the engine.
ERROR 03-18 10:25:43 [core.py:337]
CRITICAL 03-18 10:25:43 [core_client.py:260] Got fatal signal from worker processes, shutting down. See stack trace above for root cause issue.
./gemma_3_27b.sh: line 12: 901470 Killed vllm serve /root/HuggingFaceCache/models--google--gemma-3-27b-it --trust-remote-code --served-model-name gpt-4o --gpu-memory-utilization 0.99 --tensor-parallel-size 4 --port 8000 --api-key sk-123456 --max-model-len 32768 --enable-chunked-prefill --limit-mm-per-prompt image=3
I have used git log
to checkout 46f98893 [V1] Fix model parameterization for structured output tests (#14833)
, and it's okay.
This error happened after commit 46f9889, but not sure which commit. It's time consuming to test every commit.
My guess, maybe upgrade from torch==2.5.1 to torch==2.6.0 is the problem.
But can not install commit 14f301b because there is no wheel for commit 14f301b.
# git log --oneline
5eeabc2a (HEAD -> main, origin/main, origin/HEAD) [Bugfix] Fix bnb quantization for models with both HF-format and Mistral-format weights (#14950)
18551e82 [V1] TPU - Fix CI/CD runner (#14974)
e41e1602 [V1] Guard Against Main Thread Usage (#14972)
b89fb2a4 [CI/Build] Use `AutoModelForImageTextToText` to load VLMs in tests (#14945)
5340b0e2 [Bugfix] Fix interface for Olmo2 on V1 (#14976)
37e38061 (tag: v0.8.0rc2) [Bugfix] Make Gemma3 MM V0 only for now (#14971)
c0efdd65 [Fix][Structured Output] using vocab_size to construct matcher (#14868)
aaaec52a [Bugfix][Model] Mixtral: use unused head_dim config argument (#14961)
e1eb45d3 [Bugfix] Fix precommit - line too long in pixtral.py (#14960)
89fca671 [V1] Default MLA to V1 (#14921)
d20b0c13 Add patch merger (#14957)
166a168b [Doc] Fix misleading log during multi-modal profiling (#14955)
2bb0e1a7 [Bugfix][ROCm] running new process using spawn method for rocm in tests. (#14810)
6eaf1e5c [Misc] Add `--seed` option to offline multi-modal examples (#14934)
868a8c5b [Bugfix] Fix Ultravox on V1 (#14929)
b4ad56c1 [V1][TPU] Apply the ragged paged attention kernel fix and remove the padding. (#14846)
69698f25 fix minor miscalled method (#14327)
cd0cd851 [MISC] More AMD unused var clean up (#14926)
0a74bfce setup.py: drop assumption about local `main` branch (#14692)
dd3b8658 [Doc] Add vLLM Beijing meetup slide (#14938)
9b87a579 [Misc][XPU] Use None as device capacity for XPU (#14932)
b539222d [V1] Remove input cache client (#14864)
8d6cf895 (tag: v0.8.0rc1) [V1] [Spec Decode] Support random sampling for spec decode (#13933)
583a9778 [Benchmark] Do not save detailed info to json by default (#14879)
a73e183e [Misc] Replace os environ to monkeypatch in test suite (#14516)
1e799b7e [BugFix] Fix MLA + V1 + TP==1 causing reinitialization of cuda context (#14910)
7f6c5ee0 [V1][Minor] Add __repr__ to ConstantList (#14907)
faa02757 [V1] Optimize the overhead of rewinding (#14905)
8a5a9b70 [CI/Build] Update defaults for test reproducibility (#14893)
bb3aeddf [CI] Nightly Tests (#14898)
aecc780d [V1] Enable Entrypoints Tests (#14903)
90df7f23 [Doc] Add guidance for using `ccache` with `pip install -e .` in doc (#14901)
b9b5bdfc [Misc] Catching Ray Compiled Graph PP test failures for V1 (#14847)
31060b27 [V1][BugFix] Detect interleaved sliding window attention (#14896)
fc1f6771 [BugFix][V1] Fix overhead related to bad_words sampling when not in use (#14894)
f6137adb Revert "[Bugfix] Limit profiling run sequence length by max_model_len (#14785) (#14892)
e53b1350 [Bugfix] Explicitly disable Phi-4-multimodal in V1 (#14889)
d30aa7e9 [Bugfix] Limit profiling run sequence length by max_model_len (#14785)
d1ad2a57 [V1] [Spec Decode] Fix ngram tests (#14878)
b82662d9 [BugFix] Fix torch distributed stateless PG backend init (#14870)
71c1e071 [Kernel] Add more tuned configs (#14877)
b30c75dd [V1] Remove V0 fallback for mistral-tokenizer (#14873)
def232e1 [VLM] Clean up Phi-4-MM ViT implementation (#14812)
3453b964 [Misc][Doc] Minor benchmark README update (#14874)
61c6a5a7 [VLM] Merged multi-modal processor for Pixtral (#12211)
74bc397b [Core] Expose API endpoint `/is_sleeping` (#14312)
f58aea00 [CI][Intel GPU] refine intel GPU ci docker build (#14860)
3556a414 [VLM] Limit multimodal input cache by memory (#14805)
9ed6ee92 [Bugfix] EAGLE output norm bug (#14464)
ee3778d5 [Build/CI] Upgrade jinja2 to get 3 moderate CVE fixes (#14839)
aaacf173 [Doc] V1 user guide (#13991)
4c7629ca [V1][Structured Output] calculate vocab_size eagerly (#14851)
e0fdfa16 [CI/Build] Delete LoRA bias test (#14849)
5952d8ab [Attention] Get rid of mla cache alignment (#14842)
a2ae4965 [CPU] Support FP8 KV cache (#14741)
877e3522 [Docs] Add new East Coast vLLM Meetup slides to README and meetups.md (#14852)
d4d93db2 [V1] V1 Enablement Oracle (#13726)
8c0d15d5 [Misc][Easy] Annotate unused vars in the csrc files (#14798)
97ac781c [Misc] Remove misleading message in gemma2 and gemma3 (#14850)
776dcec8 Disable outlines cache by default (#14837)
ccf02fcb Revert "[Model] Mamba2 Prefill Performance Tweaks: Fixing Flurry of U… (#14848)
acaea3bb [Bugfix][V1] Fix flashinfer sampling (#14815)
9f374227 [Neuron][CI] update docker run command (#14829)
dd344e03 [Bugfix] Fix torch_xla in V0 which can't handle None seed introduced … (#14844)
54a88044 [Doc] More neutral K8s deployment guide (#14084)
bbd94a19 [Build/CI] Upgrade aiohttp to incldue CVE fix (#14840)
233ffce1 [Build/CI] Move ninja to common deps (#14835)
40677783 [CI] Add TPU v1 test (#14834)
14f301b5 Update to torch==2.6.0 (#12721)
46f98893 [V1] Fix model parameterization for structured output tests (#14833)
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.