Closed
Description
Your current environment
The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.28.3
Libc version: glibc-2.35
Python version: 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-91-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.99
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3
Nvidia driver version: 535.161.08
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.0.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 192
On-line CPU(s) list: 0-191
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8468
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
Stepping: 8
BogoMIPS: 4200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
L1d cache: 4.5 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 192 MiB (96 instances)
L3 cache: 210 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flake8==7.1.1
[pip3] flashinfer==0.1.6+cu121torch2.4
[pip3] mypy==1.11.1
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1
[pip3] torchao==0.7.0
[pip3] torchvision==0.20.1
[pip3] transformers==4.48.0
[pip3] triton==3.1.0
[conda] flashinfer 0.1.6+cu121torch2.4 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-ml-py 12.560.30 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pyzmq 26.2.0 pypi_0 pypi
[conda] torch 2.5.1 pypi_0 pypi
[conda] torchao 0.7.0 pypi_0 pypi
[conda] torchvision 0.20.1 pypi_0 pypi
[conda] transformers 4.48.0 pypi_0 pypi
[conda] triton 3.1.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.6.post2.dev299+gecf67814
vLLM Build Flags:
CUDA Archs: 5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 NIC9 NIC10 NIC11 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 PIX NODE NODE NODE NODE NODE NODE NODE SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 NODE PIX NODE NODE NODE NODE NODE NODE SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE NODE PIX NODE NODE NODE NODE NODE SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 NODE NODE NODE NODE NODE NODE NODE PIX SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS SYS SYS SYS SYS PIX NODE NODE NODE 48-95,144-191 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS SYS SYS SYS SYS NODE PIX NODE NODE 48-95,144-191 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE PIX NODE 48-95,144-191 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE PIX 48-95,144-191 1 N/A
NIC0 PIX NODE NODE NODE SYS SYS SYS SYS X NODE NODE NODE NODE NODE NODE NODE SYS SYS SYS SYS
NIC1 NODE PIX NODE NODE SYS SYS SYS SYS NODE X NODE NODE NODE NODE NODE NODE SYS SYS SYS SYS
NIC2 NODE NODE PIX NODE SYS SYS SYS SYS NODE NODE X NODE NODE NODE NODE NODE SYS SYS SYS SYS
NIC3 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE NODE X PIX PXB PXB NODE SYS SYS SYS SYS
NIC4 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE NODE PIX X PXB PXB NODE SYS SYS SYS SYS
NIC5 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE NODE PXB PXB X PIX NODE SYS SYS SYS SYS
NIC6 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE NODE PXB PXB PIX X NODE SYS SYS SYS SYS
NIC7 NODE NODE NODE PIX SYS SYS SYS SYS NODE NODE NODE NODE NODE NODE NODE X SYS SYS SYS SYS
NIC8 SYS SYS SYS SYS PIX NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS X NODE NODE NODE
NIC9 SYS SYS SYS SYS NODE PIX NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS NODE X NODE NODE
NIC10 SYS SYS SYS SYS NODE NODE PIX NODE SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE X NODE
NIC11 SYS SYS SYS SYS NODE NODE NODE PIX SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
NIC9: mlx5_9
NIC10: mlx5_10
NIC11: mlx5_11
NCCL_DEBUG=INFO
NCCL_IB_HCA=mlx5_0,mlx5_1,mlx5_2,mlx5_7,mlx5_8,mlx5_9,mlx5_10,mlx5_11
PYTORCH_BUILD_NUMBER=0
NCCL_IB_DISABLE=0
NVIDIA_PYTORCH_VERSION=24.03
PYTORCH_BUILD_VERSION=2.3.0a0+40ec155e58
CUDA_CACHE_DISABLE=1
NCCL_VERSION=2.20.5
CUDACXX=/usr/local/cuda/bin/nvcc
CUDA_VERSION=12.4.0.041
NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
CUDA_PATH=/usr/local/cuda
PYTORCH_VERSION=2.3.0a0+40ec155e58
NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
CUDA_MODULE_LOADING=LAZY
NCCL_NVLS_ENABLE=0
NVIDIA_VISIBLE_DEVICES=GPU-d9b776cd-b371-f675-f545-553ef87d1a1b,GPU-2e6d549d-b5fa-204e-5b5c-441fcddb8d37,GPU-1ef38b97-caeb-9c64-6f10-68cf0f15b7db,GPU-b34a1970-5902-a22c-e03b-2c40784ce17c,GPU-ab34f280-b8dd-cada-8a25-f4b7a57f4d42,GPU-91581554-3c19-3fe8-93fa-0789a405e972,GPU-314a0b69-39da-c1ff-715a-acce32d29a00,GPU-40881086-0988-aabc-da23-d737290ac452
CUBLAS_VERSION=12.4.2.65
CUDA_DRIVER_VERSION=550.54.14
LD_LIBRARY_PATH=/root/miniconda3/envs/sglang/lib/python3.10/site-packages/cv2/../../lib64:/usr/local/cuda/lib64:/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
NVIDIA_PRODUCT_NAME=PyTorch
NCCL_IB_RETRY_CNT=12
NCCL_IB_QPS_PER_CONNECTION=8
NVIDIA_BUILD_ID=85286408
TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX
PYTORCH_HOME=/opt/pytorch/pytorch
NCCL_IB_TIMEOUT=22
NVIDIA_REQUIRE_CUDA=cuda>=9.0
CUDNN_VERSION=9.0.0.306+cuda12.3
NCCL_WORK_FIFO_DEPTH=4194304
NCCL_SOCKET_IFNAME=eth0
NCCL_SOCKET_FAMILY=AF_INET
MAX_JOBS=8
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
Model Input Dumps
No response
🐛 Describe the bug
The issue was observed in the comment posted by @DarkLight1337 #12207 (comment). I've tested the output of different versions of vllm and transformers and have some observations:
- The output becomes nonsensical after [Model] Upgrade Aria to transformers 4.48 #12203
CEÕ̃ Ã...’ CEOà ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ...’...’...’...’ tomorrow tomorrow tomorrow tomorrow CEO tomorrow CEO tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow✡ tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrow tomorrowà tomorrow tomorrow tomorrow tomorrow tomorrow��дорÃ
The inference code
from PIL import Image
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
def main():
llm = LLM(
model="rhymes-ai/Aria",
tokenizer_mode="slow",
limit_mm_per_prompt={
"image": 2
},
max_num_seqs=2,
dtype="bfloat16",
)
tokenizer = AutoTokenizer.from_pretrained(
"rhymes-ai/Aria", use_fast=False
)
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in the image?"
},
{"type": "image"},
],
}
]
message = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
outputs = llm.generate(
{
"prompt_token_ids": message,
"multi_modal_data": {
"image": [
Image.open("/root/.cache/vllm/assets/vllm_public_assets/cherry_blossom.jpg"),
],
},
},
sampling_params=SamplingParams(max_tokens=200, top_k=1, stop=["<|im_end|>"]),
)
for o in outputs:
generated_tokens = o.outputs[0].token_ids
print(tokenizer.decode(generated_tokens))
if __name__ == "__main__":
main()
- vLLM 0.6.6, transformers 4.45.0 with an older revision of Aria hf repo produce the correct output
The image shows a beautiful scene with cherry blossoms in full bloom. The blossoms are pink and cover the branches of the trees, creating a canopy of flowers. In the background, there is a tall, white tower with a spherical structure at the top, which appears to be the Tokyo Skytree, a famous landmark in Japan. The sky is clear and blue, adding to the serene and picturesque quality of the image.<|im_end|>
The inference code
from PIL import Image
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
revision = "4844f0b5ff678e768236889df5accbe4967ec845"
def main():
llm = LLM(
model="rhymes-ai/Aria",
revision=revision,
tokenizer_mode="slow",
dtype="bfloat16",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(
"rhymes-ai/Aria", revision=revision, trust_remote_code=True, use_fast=False
)
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in the image?"
},
{"type": "image"},
],
}
]
message = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
outputs = llm.generate(
{
"prompt_token_ids": message,
"multi_modal_data": {
"image": [
Image.open("/root/.cache/vllm/assets/vllm_public_assets/cherry_blossom.jpg"),
],
},
},
sampling_params=SamplingParams(max_tokens=200, top_k=1, stop=["<|im_end|>"]),
)
for o in outputs:
generated_tokens = o.outputs[0].token_ids
print(tokenizer.decode(generated_tokens))
if __name__ == "__main__":
main()
- The inference output of transformers 4.48 is correct
The image features a prominent structure that appears to be a tall communication tower set against a clear blue sky. The tower is surrounded by lush branches with vibrant pink blossoms, likely cherry blossoms, adding a beautiful and serene atmosphere to the scene. The contrast between the architectural element and the natural elements creates a visually striking and harmonious composition. The image captures the essence of a peaceful setting blending technology with nature. <|im_end|>
The inference code
import torch
from PIL import Image
from transformers import AriaProcessor, AriaForConditionalGeneration
model_id_or_path = "rhymes-ai/Aria"
model = AriaForConditionalGeneration.from_pretrained(
model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16
)
processor = AriaProcessor.from_pretrained(model_id_or_path)
image = Image.open("/root/.cache/vllm/assets/vllm_public_assets/cherry_blossom.jpg")
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"text": "what is the image?", "type": "text"},
],
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
inputs.to(model.device)
output = model.generate(
**inputs,
max_new_tokens=200,
stop_strings=["<|im_end|>"],
tokenizer=processor.tokenizer,
do_sample=True,
temperature=0.9,
)
output_ids = output[0][inputs["input_ids"].shape[1]:]
response = processor.decode(output_ids, skip_special_tokens=True)
print(response)
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.