Skip to content

[Bug]: Can't Use RunAI Model Streamer When Streaming Into More Than 1 GPU - Pickling Error #11819

Closed
@huaxuan250

Description

@huaxuan250

Your current environment

The output of `python collect_env.py`
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Amazon Linux 2023.6.20241121 (x86_64)
GCC version: (GCC) 11.4.1 20230605 (Red Hat 11.4.1-2)
Clang version: Could not collect
CMake version: version 3.22.2
Libc version: glibc-2.34

Python version: 3.12.7 | packaged by conda-forge | (main, Oct  4 2024, 16:05:46) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-6.1.115-126.197.amzn2023.x86_64-x86_64-with-glibc2.34
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 560.35.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        46 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               96
On-line CPU(s) list:                  0-95
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz
CPU family:                           6
Model:                                85
Thread(s) per core:                   2
Core(s) per socket:                   24
Socket(s):                            2
Stepping:                             7
BogoMIPS:                             5999.99
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            1.5 MiB (48 instances)
L1i cache:                            1.5 MiB (48 instances)
L2 cache:                             48 MiB (48 instances)
L3 cache:                             71.5 MiB (2 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0-23,48-71
NUMA node1 CPU(s):                    24-47,72-95
Vulnerability Gather data sampling:   Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit:          KVM: Mitigation: VMX unsupported
Vulnerability L1tf:                   Mitigation; PTE Inversion
Vulnerability Mds:                    Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown:               Mitigation; PTI
Vulnerability Mmio stale data:        Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Vulnerable
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Retpoline
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.47.1
[pip3] triton==3.1.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-ml-py              12.560.30                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pyzmq                     26.2.0                   pypi_0    pypi
[conda] torch                     2.5.1                    pypi_0    pypi
[conda] torchvision               0.20.1                   pypi_0    pypi
[conda] transformers              4.47.1                   pypi_0    pypi
[conda] triton                    3.1.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.6.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      PHB     NODE    NODE    SYS     SYS     SYS     SYS     0-23,48-71      0               N/A
GPU1    PHB      X      NODE    NODE    SYS     SYS     SYS     SYS     0-23,48-71      0               N/A
GPU2    NODE    NODE     X      PHB     SYS     SYS     SYS     SYS     0-23,48-71      0               N/A
GPU3    NODE    NODE    PHB      X      SYS     SYS     SYS     SYS     0-23,48-71      0               N/A
GPU4    SYS     SYS     SYS     SYS      X      PHB     NODE    NODE    24-47,72-95     1               N/A
GPU5    SYS     SYS     SYS     SYS     PHB      X      NODE    NODE    24-47,72-95     1               N/A
GPU6    SYS     SYS     SYS     SYS     NODE    NODE     X      PHB     24-47,72-95     1               N/A
GPU7    SYS     SYS     SYS     SYS     NODE    NODE    PHB      X      24-47,72-95     1               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

LD_LIBRARY_PATH=/opt/conda/lib/python3.12/site-packages/cv2/../../lib64:/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/aws-ofi-nccl/lib:/usr/local/cuda/lib:/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/lib:/usr/lib:/lib:/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/aws-ofi-nccl/lib:/usr/local/cuda/lib:/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/lib:/usr/lib:/lib:/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/aws-ofi-nccl/lib:/usr/local/cuda/lib:/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/lib:/usr/lib:/lib
OMP_NUM_THREADS=48
CUDA_MODULE_LOADING=LAZY

Model Input Dumps

No response

🐛 Describe the bug

Here is what I encountered when trying to load into 2 GPUs on my EC2 through Vllm
It gave me this Can't pickle <class 'botocore.client.S3'>: attribute lookup S3 on botocore.client failed
It was setup following this guide: https://docs.vllm.ai/en/stable/serving/runai_model_streamer.html
AWS Credential was set through environment variables of AWS_ACCESS_KEY_ID AWS_SECRET_ACCESS_KEY and AWS_SESSION_TOKEN

Command line used:

vllm serve s3://llama/llama-3.1-8B --load-format runai_streamer --tensor-parallel-size 2 --model-loader-extra-config '{"concurrency":2}'

[ec2-user@ip-172-31-36-112 ~]$ vllm serve s3://llama/llama-3.1-8B --load-format runai_streamer --tensor-parallel-size 2 --model-loader-extra-config '{"concurrency":2}'
INFO 01-07 20:42:53 api_server.py:712] vLLM API server version 0.6.6.post1
INFO 01-07 20:42:53 api_server.py:713] args: Namespace(subparser='serve', model_tag='s3://llama/llama-3.1-8B', config='', host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='s3://llama/llama-3.1-8B', task='auto', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='runai_streamer', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=None, guided_decoding_backend='xgrammar', logits_processor_pattern=None, distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=2, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=None, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config='{"concurrency":2}', ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', generation_config=None, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, dispatch_function=<function serve at 0x7faf3ab7d940>)
INFO 01-07 20:42:53 api_server.py:199] Started engine process with PID 1982121
INFO 01-07 20:44:49 config.py:510] This model supports multiple tasks: {'classify', 'score', 'generate', 'embed', 'reward'}. Defaulting to 'generate'.
INFO 01-07 20:44:50 config.py:510] This model supports multiple tasks: {'embed', 'classify', 'reward', 'score', 'generate'}. Defaulting to 'generate'.
INFO 01-07 20:44:51 config.py:1310] Defaulting to use mp for distributed inference
WARNING 01-07 20:44:51 arg_utils.py:1103] Chunked prefill is enabled by default for models with max_model_len > 32K. Currently, chunked prefill might not work with some features or models. If you encounter any issues, please disable chunked prefill by setting --enable-chunked-prefill=False.
INFO 01-07 20:44:51 config.py:1458] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 01-07 20:44:51 config.py:1310] Defaulting to use mp for distributed inference
WARNING 01-07 20:44:51 arg_utils.py:1103] Chunked prefill is enabled by default for models with max_model_len > 32K. Currently, chunked prefill might not work with some features or models. If you encounter any issues, please disable chunked prefill by setting --enable-chunked-prefill=False.
INFO 01-07 20:44:51 config.py:1458] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 01-07 20:44:51 llm_engine.py:234] Initializing an LLM engine (v0.6.6.post1) with config: model='/tmp/tmprwsjgq9m', speculative_config=None, tokenizer='/tmp/tmptbmhhdeo', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=131072, download_dir=None, load_format=LoadFormat.RUNAI_STREAMER, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=s3://llama/llama-3.1-8B, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=False, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"candidate_compile_sizes":[],"compile_sizes":[],"capture_sizes":[256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":256}, use_cached_outputs=True, 
INFO 01-07 20:44:51 custom_cache_manager.py:17] Setting Triton cache manager to: vllm.triton_utils.custom_cache_manager:CustomCacheManager
ERROR 01-07 20:44:51 engine.py:366] Can't pickle <class 'botocore.client.S3'>: attribute lookup S3 on botocore.client failed
ERROR 01-07 20:44:51 engine.py:366] Traceback (most recent call last):
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 357, in run_mp_engine
ERROR 01-07 20:44:51 engine.py:366]     engine = MQLLMEngine.from_engine_args(engine_args=engine_args,
ERROR 01-07 20:44:51 engine.py:366]              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 119, in from_engine_args
ERROR 01-07 20:44:51 engine.py:366]     return cls(ipc_path=ipc_path,
ERROR 01-07 20:44:51 engine.py:366]            ^^^^^^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 71, in __init__
ERROR 01-07 20:44:51 engine.py:366]     self.engine = LLMEngine(*args, **kwargs)
ERROR 01-07 20:44:51 engine.py:366]                   ^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/site-packages/vllm/engine/llm_engine.py", line 273, in __init__
ERROR 01-07 20:44:51 engine.py:366]     self.model_executor = executor_class(vllm_config=vllm_config, )
ERROR 01-07 20:44:51 engine.py:366]                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/site-packages/vllm/executor/distributed_gpu_executor.py", line 26, in __init__
ERROR 01-07 20:44:51 engine.py:366]     super().__init__(*args, **kwargs)
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 36, in __init__
ERROR 01-07 20:44:51 engine.py:366]     self._init_executor()
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/site-packages/vllm/executor/multiproc_gpu_executor.py", line 58, in _init_executor
ERROR 01-07 20:44:51 engine.py:366]     worker = ProcessWorkerWrapper(
ERROR 01-07 20:44:51 engine.py:366]              ^^^^^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/site-packages/vllm/executor/multiproc_worker_utils.py", line 167, in __init__
ERROR 01-07 20:44:51 engine.py:366]     self.process.start()
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/multiprocessing/process.py", line 121, in start
ERROR 01-07 20:44:51 engine.py:366]     self._popen = self._Popen(self)
ERROR 01-07 20:44:51 engine.py:366]                   ^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/multiprocessing/context.py", line 289, in _Popen
ERROR 01-07 20:44:51 engine.py:366]     return Popen(process_obj)
ERROR 01-07 20:44:51 engine.py:366]            ^^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/multiprocessing/popen_spawn_posix.py", line 32, in __init__
ERROR 01-07 20:44:51 engine.py:366]     super().__init__(process_obj)
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/multiprocessing/popen_fork.py", line 19, in __init__
ERROR 01-07 20:44:51 engine.py:366]     self._launch(process_obj)
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/multiprocessing/popen_spawn_posix.py", line 47, in _launch
ERROR 01-07 20:44:51 engine.py:366]     reduction.dump(process_obj, fp)
ERROR 01-07 20:44:51 engine.py:366]   File "/opt/conda/lib/python3.12/multiprocessing/reduction.py", line 60, in dump
ERROR 01-07 20:44:51 engine.py:366]     ForkingPickler(file, protocol).dump(obj)
ERROR 01-07 20:44:51 engine.py:366] _pickle.PicklingError: Can't pickle <class 'botocore.client.S3'>: attribute lookup S3 on botocore.client failed
Process SpawnProcess-1:
Traceback (most recent call last):
  File "/opt/conda/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap
    self.run()
  File "/opt/conda/lib/python3.12/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 368, in run_mp_engine
    raise e
  File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 357, in run_mp_engine
    engine = MQLLMEngine.from_engine_args(engine_args=engine_args,
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 119, in from_engine_args
    return cls(ipc_path=ipc_path,
           ^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 71, in __init__
    self.engine = LLMEngine(*args, **kwargs)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/site-packages/vllm/engine/llm_engine.py", line 273, in __init__
    self.model_executor = executor_class(vllm_config=vllm_config, )
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/site-packages/vllm/executor/distributed_gpu_executor.py", line 26, in __init__
    super().__init__(*args, **kwargs)
  File "/opt/conda/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 36, in __init__
    self._init_executor()
  File "/opt/conda/lib/python3.12/site-packages/vllm/executor/multiproc_gpu_executor.py", line 58, in _init_executor
    worker = ProcessWorkerWrapper(
             ^^^^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/site-packages/vllm/executor/multiproc_worker_utils.py", line 167, in __init__
    self.process.start()
  File "/opt/conda/lib/python3.12/multiprocessing/process.py", line 121, in start
    self._popen = self._Popen(self)
                  ^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/multiprocessing/context.py", line 289, in _Popen
    return Popen(process_obj)
           ^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/multiprocessing/popen_spawn_posix.py", line 32, in __init__
    super().__init__(process_obj)
  File "/opt/conda/lib/python3.12/multiprocessing/popen_fork.py", line 19, in __init__
    self._launch(process_obj)
  File "/opt/conda/lib/python3.12/multiprocessing/popen_spawn_posix.py", line 47, in _launch
    reduction.dump(process_obj, fp)
  File "/opt/conda/lib/python3.12/multiprocessing/reduction.py", line 60, in dump
    ForkingPickler(file, protocol).dump(obj)
_pickle.PicklingError: Can't pickle <class 'botocore.client.S3'>: attribute lookup S3 on botocore.client failed
Traceback (most recent call last):
  File "/opt/conda/bin/vllm", line 8, in <module>
    sys.exit(main())
             ^^^^^^
  File "/opt/conda/lib/python3.12/site-packages/vllm/scripts.py", line 201, in main
    args.dispatch_function(args)
  File "/opt/conda/lib/python3.12/site-packages/vllm/scripts.py", line 42, in serve
    uvloop.run(run_server(args))
  File "/opt/conda/lib/python3.12/site-packages/uvloop/__init__.py", line 109, in run
    return __asyncio.run(
           ^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/asyncio/runners.py", line 194, in run
    return runner.run(main)
           ^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/asyncio/runners.py", line 118, in run
    return self._loop.run_until_complete(task)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
  File "/opt/conda/lib/python3.12/site-packages/uvloop/__init__.py", line 61, in wrapper
    return await main
           ^^^^^^^^^^
  File "/opt/conda/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 740, in run_server
    async with build_async_engine_client(args) as engine_client:
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/contextlib.py", line 210, in __aenter__
    return await anext(self.gen)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 118, in build_async_engine_client
    async with build_async_engine_client_from_engine_args(
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/contextlib.py", line 210, in __aenter__
    return await anext(self.gen)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 223, in build_async_engine_client_from_engine_args
    raise RuntimeError(
RuntimeError: Engine process failed to start. See stack trace for the root cause.

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions