-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
389 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"\n", | ||
"os.environ['VLLM_ATTENTION_BACKEND'] = \"FLASHINFER\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"INFO 08-13 11:24:30 llm_engine.py:176] Initializing an LLM engine (v0.5.4) with config: model='meta-llama/Meta-Llama-3-8B', speculative_config=None, tokenizer='meta-llama/Meta-Llama-3-8B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=8192, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None), seed=0, served_model_name=meta-llama/Meta-Llama-3-8B, use_v2_block_manager=False, enable_prefix_caching=False)\n", | ||
"INFO 08-13 11:24:31 selector.py:143] Using Flashinfer backend.\n", | ||
"INFO 08-13 11:24:31 model_runner.py:721] Starting to load model meta-llama/Meta-Llama-3-8B...\n", | ||
"INFO 08-13 11:24:31 selector.py:143] Using Flashinfer backend.\n", | ||
"INFO 08-13 11:24:32 weight_utils.py:231] Using model weights format ['*.safetensors']\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "9055277a9730496daf79b93e5c4b06b9", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"Loading safetensors checkpoint shards: 0% Completed | 0/4 [00:00<?, ?it/s]\n" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"INFO 08-13 11:24:36 model_runner.py:733] Loading model weights took 14.9595 GB\n", | ||
"INFO 08-13 11:24:37 gpu_executor.py:102] # GPU blocks: 27699, # CPU blocks: 2048\n", | ||
"INFO 08-13 11:24:43 model_runner.py:1025] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.\n", | ||
"INFO 08-13 11:24:43 model_runner.py:1029] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.\n", | ||
"INFO 08-13 11:25:01 model_runner.py:1226] Graph capturing finished in 19 secs.\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from vllm.entrypoints.llm import LLM\n", | ||
"\n", | ||
"llm = LLM(model=\"meta-llama/Meta-Llama-3-8B\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"Processed prompts: 0%| | 0/1 [00:00<?, ?it/s, est. speed input: 0.00 toks/s, output: 0.00 toks/s]" | ||
] | ||
}, | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"Processed prompts: 100%|██████████| 1/1 [00:00<00:00, 4.69it/s, est. speed input: 14.12 toks/s, output: 75.29 toks/s]\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[RequestOutput(request_id=1, prompt='apples', prompt_token_ids=[128000, 680, 645], encoder_prompt=None, encoder_prompt_token_ids=None, prompt_logprobs=None, outputs=[CompletionOutput(index=0, text='common clegCommonGenERIC:wikipedia:cccccccc${Satellite Image}', token_ids=(5581, 272, 1978, 11076, 10172, 37016, 53982, 15288, 25, 56697, 56697, 2420, 35982, 18652, 4758, 92), cumulative_logprob=None, logprobs=None, finish_reason=length, stop_reason=None)], finished=True, metrics=RequestMetrics(arrival_time=1723548797.5150597, last_token_time=1723548797.5150597, first_scheduled_time=1723548797.5180113, first_token_time=1723548797.5427005, time_in_queue=0.0029516220092773438, finished_time=1723548797.7302678), lora_request=None)]" | ||
] | ||
}, | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"llm.generate(\"apples\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.