Skip to content

BUG: llmcompressor oneshot function infinitely hangs with awq & cognitivecomputations/dolphin-2.8-mistral-7b-v02 #1520

Closed
@ryanrozanitis

Description

@ryanrozanitis

Describe the bug
After finetuning a model, I try to quantize it with AWQ. After Running AWQModifier calibration is complete, the process infinitely hangs, and never completes.

Expected behavior
The model should be quantized with awq.

Environment
using 2 A100s.
Reusing the vllm standard to collect environment information:

==============================
        System Info
==============================
OS                           : Ubuntu 20.04.6 LTS (x86_64)
GCC version                  : (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Clang version                : Could not collect
CMake version                : version 3.26.4
Libc version                 : glibc-2.31

==============================
       PyTorch Info
==============================
PyTorch version              : 2.4.0+cu121
Is debug build               : False
CUDA used to build PyTorch   : 12.1
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] (64-bit runtime)
Python platform              : Linux-5.4.143.bsk.5-oci-amd64-x86_64-with-glibc2.31

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.1.105
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA A100-SXM4-40GB
GPU 1: NVIDIA A100-SXM4-40GB

Nvidia driver version        : 470.103.01
cuDNN version                : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   48 bits physical, 48 bits virtual
CPU(s):                          256
On-line CPU(s) list:             0-254
Off-line CPU(s) list:            255
Thread(s) per core:              1
Core(s) per socket:              64
Socket(s):                       2
NUMA node(s):                    8
Vendor ID:                       AuthenticAMD
CPU family:                      25
Model:                           1
Model name:                      AMD EPYC 7J13 64-Core Processor
Stepping:                        1
Frequency boost:                 enabled
CPU MHz:                         3235.477
CPU max MHz:                     2550.0000
CPU min MHz:                     1500.0000
BogoMIPS:                        4899.56
Virtualization:                  AMD-V
L1d cache:                       2 MiB
L1i cache:                       2 MiB
L2 cache:                        32 MiB
L3 cache:                        256 MiB
NUMA node0 CPU(s):               0-15,128-143
NUMA node1 CPU(s):               16-31,144-159
NUMA node2 CPU(s):               32-47,160-175
NUMA node3 CPU(s):               48-63,176-191
NUMA node4 CPU(s):               64-79,192-207
NUMA node5 CPU(s):               80-95,208-223
NUMA node6 CPU(s):               96-111,224-239
NUMA node7 CPU(s):               112-127,240-254
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Vulnerable, IBPB: conditional, IBRS_FW, STIBP: always-on, RSB filling
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca

==============================
Versions of relevant libraries
==============================
[pip3] mypy==1.10.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.8.61
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchaudio==2.4.0
[pip3] torchelastic==0.2.2
[pip3] torchvision==0.19.0
[pip3] transformers==4.51.3
[pip3] triton==3.0.0
[conda] blas                      1.0                         mkl  
[conda] cuda-cudart               12.1.105                      0    nvidia
[conda] cuda-cupti                12.1.105                      0    nvidia
[conda] cuda-libraries            12.1.0                        0    nvidia
[conda] cuda-nvrtc                12.1.105                      0    nvidia
[conda] cuda-nvtx                 12.1.105                      0    nvidia
[conda] cuda-opencl               12.2.140                      0    nvidia
[conda] cuda-runtime              12.1.0                        0    nvidia
[conda] ffmpeg                    4.3                  hf484d3e_0    pytorch
[conda] libcublas                 12.1.0.26                     0    nvidia
[conda] libcufft                  11.0.2.4                      0    nvidia
[conda] libcufile                 1.7.2.10                      0    nvidia
[conda] libcurand                 10.3.3.141                    0    nvidia
[conda] libcusolver               11.4.4.55                     0    nvidia
[conda] libcusparse               12.0.2.55                     0    nvidia
[conda] libjpeg-turbo             2.0.0                h9bf148f_0    pytorch
[conda] libnpp                    12.0.2.50                     0    nvidia
[conda] libnvjitlink              12.1.105                      0    nvidia
[conda] libnvjpeg                 12.1.1.14                     0    nvidia
[conda] mkl                       2023.1.0         h213fc3f_46343  
[conda] mkl-service               2.4.0           py310h5eee18b_1  
[conda] mkl_fft                   1.3.8           py310h5eee18b_0  
[conda] mkl_random                1.2.4           py310hdb19cb5_0  
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.1.3.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.1.105                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.1.105                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.1.105                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.0.2.54                pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.2.106               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.4.5.107               pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.1.0.106               pypi_0    pypi
[conda] nvidia-ml-py              12.570.86                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.8.61                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.1.105                 pypi_0    pypi
[conda] pytorch-cuda              12.1                 ha16c6d3_5    pytorch
[conda] pytorch-mutex             1.0                        cuda    pytorch
[conda] pyzmq                     26.2.0                   pypi_0    pypi
[conda] torch                     2.4.0                    pypi_0    pypi
[conda] torchaudio                2.4.0                    pypi_0    pypi
[conda] torchelastic              0.2.2                    pypi_0    pypi
[conda] torchvision               0.19.0                   pypi_0    pypi
[conda] transformers              4.51.3                   pypi_0    pypi
[conda] triton                    3.0.0                    pypi_0    pypi

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.6.3.post1
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
  	GPU0	GPU1	mlx5_0	mlx5_1	mlx5_2	mlx5_3	mlx5_4	mlx5_5	mlx5_6	mlx5_7	mlx5_8	mlx5_9	mlx5_10	mlx5_11	mlx5_12	mlx5_13	mlx5_14	mlx5_15	mlx5_16	mlx5_17	CPU Affinity	NUMA Affinity
GPU0	 X 	NV12	SYS	PXB	PXB	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYSSYS	SYS	SYS	16-31,144-159	1
GPU1	NV12	 X 	SYS	PXB	PXB	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYSSYS	SYS	SYS	16-31,144-159	1
mlx5_0	SYS	SYS	 X 	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYSSYS	SYS	SYS		
mlx5_1	PXB	PXB	SYS	 X 	PIX	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYSSYS	SYS	SYS		
mlx5_2	PXB	PXB	SYS	PIX	 X 	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYSSYS	SYS	SYS		
mlx5_3	PXB	PXB	SYS	PXB	PXB	 X 	PIX	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYSSYS	SYS	SYS		
mlx5_4	PXB	PXB	SYS	PXB	PXB	PIX	 X 	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYSSYS	SYS	SYS		
mlx5_5	SYS	SYS	SYS	SYS	SYS	SYS	SYS	 X 	PIX	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYSSYS	PXB	PXB		
mlx5_6	SYS	SYS	SYS	SYS	SYS	SYS	SYS	PIX	 X 	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYSSYS	PXB	PXB		
mlx5_7	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	 X 	PIX	PXB	PXB	SYS	SYS	SYS	SYSSYS	SYS	SYS		
mlx5_8	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	PIX	 X 	PXB	PXB	SYS	SYS	SYS	SYSSYS	SYS	SYS		
mlx5_9	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	 X 	PIX	SYS	SYS	SYS	SYSSYS	SYS	SYS		
mlx5_10	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	PIX	 X 	SYS	SYS	SYS	SYSSYS	SYS	SYS		
mlx5_11	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	 X 	SYS	SYS	SYSSYS	SYS	SYS		
mlx5_12	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	 X 	PIX	PXBPXB	SYS	SYS		
mlx5_13	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	PIX	 X 	PXBPXB	SYS	SYS		
mlx5_14	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	 X PIX	SYS	SYS		
mlx5_15	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	PIX X 	SYS	SYS		
mlx5_16	SYS	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYSSYS	 X 	PIX		
mlx5_17	SYS	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYSSYS	PIX	 X 		

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=GPU-88ab310d-c026-8fc5-a2b7-a332b3d7ee6b,GPU-a053f2e6-934a-eb2f-c029-3953c7983dcc
NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=tesla,driver>=515,driver<516 brand=unknown,driver>=515,driver<516 brand=nvidia,driver>=515,driver<516 brand=nvidiartx,driver>=515,driver<516 brand=geforce,driver>=515,driver<516 brand=geforcertx,driver>=515,driver<516 brand=quadro,driver>=515,driver<516 brand=quadrortx,driver>=515,driver<516 brand=titan,driver>=515,driver<516 brand=titanrtx,driver>=515,driver<516 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NCCL_IB_PCI_RELAXED_ORDERING=1
NCCL_VERSION=2.17.1-1
NCCL_SOCKET_IFNAME=eth0
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NCCL_DEBUG=INFO
NCCL_IB_HCA=
NVIDIA_PRODUCT_NAME=CUDA
NCCL_IB_GID_INDEX=
CUDA_VERSION=12.1.1
PYTORCH_VERSION=2.1.0
CUDA_MPS_PIPE_DIRECTORY=/dev/shm/pipe
NCCL_IB_TIMEOUT=23
CUDA_MPS_LOG_DIRECTORY=/dev/shm/nvidia-log
LD_LIBRARY_PATH=/opt/conda/lib/python3.10/site-packages/cv2/../../lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NCCL_IB_DISABLE=0
NCCL_IB_RETRY_CNT=7
CUDA_MODULE_LOADING=LAZY

To Reproduce

  1. Download cognitivecomputations/dolphin-2.8-mistral-7b-v02 locallly
  2. Download mit-han-lab/pile-val-backup dataset locally
  3. Run the script below. make sure the model path and dataset path are correct to your filesystem.
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer

from llmcompressor import oneshot
from llmcompressor.modifiers.awq import AWQModifier

MODEL_ID = "/home/ryanr/cognitivecomputations/dolphin-2.8-mistral-7b-v02"

model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID, device_map="auto", torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)

DATASET_ID = "/home/ryanr/mit-han-lab/pile-val-backup/val.jsonl"


NUM_CALIBRATION_SAMPLES = 256
MAX_SEQUENCE_LENGTH = 512

ds = load_dataset("json", data_files=DATASET_ID, split="train")
ds = ds.shuffle(seed=42)

def preprocess(example):
    return {
        "text": tokenizer.apply_chat_template(
            [{"role": "user", "content": example["text"]}],
            tokenize=False,
        )
    }

ds = ds.map(preprocess)	

# Tokenize inputs.
def tokenize(sample):
    return tokenizer(
        sample["text"],
        padding=False,
        max_length=MAX_SEQUENCE_LENGTH,
        truncation=True,
        add_special_tokens=False,
    )


# Configure the quantization algorithm to run.
recipe = [
    AWQModifier(ignore=["lm_head"], scheme="W4A16_ASYM", targets=["Linear"]),
]


oneshot(
    model=model,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)


# print("\n\n")
# print("========== SAMPLE GENERATION ==============")
# input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
# output = model.generate(input_ids, max_new_tokens=100)
# print(tokenizer.decode(output[0]))
# print("==========================================\n\n")



SAVE_DIR = MODEL_ID.split("/")[-1] + "-awq-asym"
print(f'save model to {SAVE_DIR}')
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)

Errors
There is no error, the process is stuck forever.

Additional Context
cognitivecomputations/dolphin-2.8-mistral-7b-v02
mit-han-lab/pile-val-backup

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions