|
| 1 | +import contextlib |
| 2 | +from functools import partial |
| 3 | + |
| 4 | +import pytest |
| 5 | +import torch |
| 6 | +from transformers import AutoModelForCausalLM |
| 7 | + |
| 8 | +from llmcompressor.modeling.moe_context import moe_calibration_context |
| 9 | +from llmcompressor.modeling.qwen3_next_moe import CalibrationQwen3NextSparseMoeBlock |
| 10 | +from llmcompressor.utils.dev import skip_weights_download |
| 11 | +from llmcompressor.utils.helpers import DisableQuantization, calibration_forward_context |
| 12 | +from tests.testing_utils import requires_cadence, requires_gpu |
| 13 | + |
| 14 | + |
| 15 | +@requires_cadence("weekly") |
| 16 | +@pytest.mark.parametrize("model_stub", ["Qwen/Qwen3-Next-80B-A3B-Instruct"]) |
| 17 | +def test_calib_replace_qwen3moe_all_experts(model_stub): |
| 18 | + with skip_weights_download(): |
| 19 | + model = AutoModelForCausalLM.from_pretrained(model_stub) |
| 20 | + |
| 21 | + # Qwen3MoE layer replacement is temporary within the context |
| 22 | + with contextlib.ExitStack() as stack: |
| 23 | + stack.enter_context(calibration_forward_context(model)) |
| 24 | + stack.enter_context(DisableQuantization(model)) |
| 25 | + stack.enter_context(moe_calibration_context(model, calibrate_all_experts=True)) |
| 26 | + |
| 27 | + # Find one MoE layer |
| 28 | + moe_layer = None |
| 29 | + for name, module in model.named_modules(): |
| 30 | + if isinstance(module, CalibrationQwen3NextSparseMoeBlock): |
| 31 | + moe_layer = module |
| 32 | + break |
| 33 | + |
| 34 | + assert moe_layer is not None |
| 35 | + |
| 36 | + num_experts = len(moe_layer.experts) |
| 37 | + expert_triggered = [False for _ in range(num_experts)] |
| 38 | + |
| 39 | + # Define the hook function |
| 40 | + def hook_fn(i, module, input, output): |
| 41 | + expert_triggered[i] = True |
| 42 | + |
| 43 | + # Attach hooks using functools.partial to bind each index |
| 44 | + for i, expert in enumerate(moe_layer.experts): |
| 45 | + expert.register_forward_hook(partial(hook_fn, i)) |
| 46 | + |
| 47 | + # Create dummy input tensor that simulates hidden_states |
| 48 | + hidden_dim = model.config.hidden_size |
| 49 | + batch, seq_len = 4, 32 |
| 50 | + sample = torch.randn(batch, seq_len, hidden_dim, dtype=torch.float32) |
| 51 | + |
| 52 | + # Forward through the MoE layer directly |
| 53 | + with torch.no_grad(): |
| 54 | + _ = moe_layer(sample) |
| 55 | + |
| 56 | + # Assert all experts are used |
| 57 | + assert all( |
| 58 | + expert_triggered |
| 59 | + ), f"Not all experts were triggered: {expert_triggered}" |
| 60 | + |
| 61 | + |
| 62 | +@requires_gpu |
| 63 | +def test_calib_qwen3_moe_module(): |
| 64 | + from transformers import Qwen3NextConfig |
| 65 | + from transformers.models.qwen3_next.modeling_qwen3_next import ( |
| 66 | + Qwen3NextSparseMoeBlock, |
| 67 | + ) |
| 68 | + |
| 69 | + config = Qwen3NextConfig() |
| 70 | + with torch.device("cuda"): |
| 71 | + original = Qwen3NextSparseMoeBlock(config).eval() |
| 72 | + |
| 73 | + # Create dummy input tensor that simulates hidden_states |
| 74 | + hidden_dim = config.hidden_size |
| 75 | + batch, seq_len = 4, 32 |
| 76 | + sample = torch.randn(batch, seq_len, hidden_dim, device="cuda") |
| 77 | + |
| 78 | + with calibration_forward_context(original): |
| 79 | + true_output = original(sample) |
| 80 | + |
| 81 | + module = CalibrationQwen3NextSparseMoeBlock( |
| 82 | + original, config, calibrate_all_experts=True |
| 83 | + ) |
| 84 | + |
| 85 | + with calibration_forward_context(module): |
| 86 | + output = module(sample) |
| 87 | + assert torch.nn.functional.mse_loss(true_output[0], output[0]) < 1e-10 |
| 88 | + assert torch.nn.functional.mse_loss(true_output[1], output[1]) < 1e-10 |
| 89 | + |
| 90 | + module = CalibrationQwen3NextSparseMoeBlock( |
| 91 | + original, config, calibrate_all_experts=False |
| 92 | + ) |
| 93 | + with calibration_forward_context(module): |
| 94 | + output = module(sample) |
| 95 | + assert torch.nn.functional.mse_loss(true_output[0], output[0]) < 1e-10 |
| 96 | + assert torch.nn.functional.mse_loss(true_output[1], output[1]) < 1e-10 |
0 commit comments