创建虚拟环境:
conda create -n your_env_name python=3.12
conda activate your_env_name安装需要的包:
pip install -r requirements.txt将train.csv和test.csv放到data目录下,然后进行数据预处理:
python scripts/data_preprocessing.py(可选)数据EDA:
python scripts/exploratory_data_analysis.py修改conf/下面的参数或者从命令行传入对应参数,具体阅读hydra官方文档。
执行训练:
python train.py model=lstm
python train.py model=transformer
python train.py model=htfn训练完后,执行下面的命令分别在训练数据和测试数据上进行拟合效果的可视化:
python scripts/visualize_training_fit.py
python scripts/visualize_results.py