A full-stack task management ecosystem powered by local AI inference.
This platform integrates a Telegram Bot, Web Dashboard, and a FastAPI backend to help users generate project roadmaps and track progress. Unlike standard wrappers, this project runs a local LLM (Qwen 2.5 via llama.cpp) completely offline/self-hosted using Docker.
The system relies on a microservices-like architecture orchestrated via Docker Compose:
graph TD
User((User))
TG[Telegram Bot]
Web[Web Dashboard]
API[FastAPI Backend]
DB[(PostgreSQL)]
Redis[(Redis Cache)]
LLM[Local LLM Service]
User --> TG
User --> Web
TG --> API
Web --> API
API --> DB
API --> Redis
API -->|Prompt| LLM
LLM -->|Stream| API
Self-Hosted Intelligence: Uses llama.cpp server to run quantized models (GGUF) locally. No OpenAI API keys required. Omnichannel: Manage tasks via Telegram Bot (Aiogram 3) or Web Admin Panel (Next.js). AI Generation: Automatically breaks down a vague idea into 5-7 actionable technical tasks with acceptance criteria. Reactive UI: Real-time progress bars for AI generation on both Web and Telegram.
Frontend: Next.js 14, Tailwind CSS (v4), TypeScript.
Backend: FastAPI, SQLAlchemy (Async), Pydantic.
AI Engine: llama.cpp python server (OpenAI-compatible endpoint).
Infrastructure: Docker, Docker Bake, Caddy (Reverse Proxy).
Clone & Configure:
git clone https://github.com/vlimkv/ai-project-tracker.git
cp .env.example .envLaunch Ecosystem:
# This will download the LLM model (~2GB) on first run
docker compose up -d --buildAccess Points:
Web UI: http://localhost:3000
API Docs: http://localhost:8000/docs
LLM Stream: http://localhost:8080/v1
The system is highly configurable via .env. Key parameters:
AI_PROVIDER: Set to oss for local llama.cpp or openai for cloud fallback.
OSS_MODEL: Specify the HuggingFace model tag (default: qwen2.5-3b-instruct).
REDIS_URL: For FSM state storage and AI response caching.
Docker Desktop installed.
RAM: Minimum 4GB (8GB recommended for larger models).
GPU: Optional (supports CPU inference via llama.cpp).
Developed by Alimkhan Slambek. Architecture demonstrates secure, private AI integration pattern.