This repository contains the software to train and evaluate the AERGCN model for the MCL-WiC competition.
- Python >= 3.7
- numpy >= 1.19.4
- scipy >= 1.5.4
- pandas >= 1.1.5
- matplotlib >= 3.3.3
- spacy >= 2.3.5
- en-core-web-sm >= 2.3.1
- zh-core-web-sm >= 2.3.1
- fr-core-news-sm >= 2.3.1
- torch >= 1.7.1
- tensorboard >= 2.4.0
- transformers == 4.1.1
- pytokenizations >= 0.7.2
- wandb >= 0.8.36 (optional)
Please specifiy the used syntactic relation types and POS tag labels for the different languages under /resources/language-name/
, i.e. for English syntactic relation types and POS tag labels.
Please specify the command-line arguments for different settings, check details by running
python -m AERGCN -h
under the main folder.
Each modules can be run individually for different functionlity tests, e.g.
python -m AERGCN.data
Under the main folder, run the command
python -m AERGCN
Continue training the model with logs stored in log_dir (in the format: yyyy-mm-dd/model_num e.g. 2020-08-08/8/)
Under the main folder, run the command
python -m AERGCN --log_dir /path-to-log_dir/
The format of the directory must comply with yyyy-mm-dd/model_num that contains the complete content folder of a (partially) trained model.
Under the main folder, run the command
python -m AERGCN --mode development(or test) --model_dir /path-to-model-pt/
where devleopment and test are for evaluating the specified model on the development split and the test split respectively. In the current version, the hyperparameters for configuring the model should be specified manually (can be checked in params/params.json
under the trined model folder).
GPL-3.0