Solving the Character recognition problem as an SVM optimization problem using CVXOPT
##Support Vector Machine
Name
svm - Run the executable program for SVM
Synopsis
Part a./svm <part> <tr> <ts> <out> <c_value>
Part b./svm <part> <tr> <ts> <out> <c_value> <gamma>
Part c./svm <part> <tr> <ts> <out> <c_value> <gamma>
Description
This program will train svm model using given code on train data, make predictions on test data and write final predictions in given output file.
Options
-part
Part i.e. a/b/c.
-tr
File containing training data in csv format where 1st entry is the target
-ts
File containing test data in csv format where 1st entry is the target
-out
Output file for predictions. One value in each line.
-c_value
C is a regularization parameter that controls the trade-off between maximizing the margin and minimizing the training error.
-gamma
Bandwidth parameter for RBF kernel
Example
./svm a DHC_train.csv DHC_test.csv output 10
./svm b DHC_train.csv DHC_test.csv output 10 0.01
./svm c DHC_train.csv DHC_test.csv output 10 0.01
-
Part A
- Expressed the SVM dual problem using a linear kernel
- Soft Margin formulation
-
Part B
- Solved the dual SVM Problem using a RBF Kernel(Gaussian Kernel)
-
Part C
- Implemented PCA algorithm using the SVD formulation.
- Applied SVM with RBF Kernel on the projected data
Data
- DHC_train.csv: Train data
- DHC_test.csv: Test data