Skip to content

Lithological Mapping Using Spatially Constrained Bayesian Network (SCB-net): A Deep Learning Model for Generating Field-Data-Constrained Predictions with Uncertainty Evaluation Using Remote Sensing Data

License

Notifications You must be signed in to change notification settings

victsnet/SCB-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SCB-Net

Spatially Constrained Bayesian Network (SCB-Net): An Approach to Obtaining Field Data-Constrained Predictive Maps with Uncertainty Assessment. In this project, we have developed an innovative approach to ensure that predicted lithologies accurately reflect the samples collected in the field. Moreover, our model leverages multisource remote sensing data to make predictions in areas where no direct samples are available. Our study focuses on the Churchill Province, located in Quebec, Canada.

Predictive Lithological Map displaying 16 lithologic units

output

(instability = uncertain predictions)

Authors: Victor S. Santos (INRS & NRCan), Erwan Gloaguen (INRS), and Shiva Tirdad (NRCan).

Link to Preprint - ArXiv

INRS: Institut National de la Recherche Scientifique

NRCan: Natural Resources Canada

Inputs

Northeast area

Probability masks

Purpose File name
Training train_prob_mask_bs10_400_code_r3.tif
Validation val_prob_mask_bs10_400_code_r3.tif

Remote sensing layers

Type File(s)
Multispectral sentinel2_multispec_east_qc_100m.tif
RADAR ALOS_PALSAR_RADAR_MOSAIC_QC_100m.tif
Magnetic MAG_QC_LOWRES_RESMAG_4269_epsg.tif; MAGRES_QC_LOWRES_AS_4269_epsg.tif; MAGRES_QC_LOWRES_DV1_4269_epsg.tif
DEM alos_elev_east_qc_100m.tif

North area

Probability masks

Purpose File name
Training train_prob_mask_bs10_400_code_r2_north.tif
Validation val_prob_mask_bs10_400_code_r2_north.tif

Remote sensing layers

Type File(s)
Multispectral sentinel2_multispec_75m.tif
RADAR ALOS_SAR_NORD_QC_75m.tif
Magnetic MAG_QC_LOWRES_RESMAG_4269_epsg.tif; MAGRES_QC_LOWRES_AS_4269_epsg.tif; MAGRES_QC_LOWRES_DV1_4269_epsg.tif
DEM alos_elevation_75m.tif

Outputs

Predictions

Variable Description
pred_grid Deterministic predictions
pred_grid_mean Mean of predictions
pred_grid_var Variance of predictions
cat Map of the most probable class per pixel

Access to data

Link to remotely sensed data, probability masks, and weights of the models.

Requirements

  • python>=3.7
  • numpy>=1.22
  • pandas>=1.4
  • xarray>=2022.03
  • rioxarray>=0.10
  • rasterio>=1.3
  • geopandas>=0.11
  • shapely>=1.8
  • scipy>=1.8
  • tqdm>=4.64
  • matplotlib>=3.5
  • scikit-learn>=1.1
  • textdistance>=4.2
  • translate>=3.6
  • tensorflow>=2.8
  • opencv-python>=4.5
  • pyproj>=3.3

License

This project is licensed under the Creative Commons Attribution 4.0 International License - see the LICENSE file for details.

About

Lithological Mapping Using Spatially Constrained Bayesian Network (SCB-net): A Deep Learning Model for Generating Field-Data-Constrained Predictions with Uncertainty Evaluation Using Remote Sensing Data

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published