forked from neuralchen/SimSwap
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support Simswap 512
- Loading branch information
Showing
22 changed files
with
549 additions
and
54 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
''' | ||
Author: Naiyuan liu | ||
Github: https://github.com/NNNNAI | ||
Date: 2021-11-15 19:42:42 | ||
LastEditors: Naiyuan liu | ||
LastEditTime: 2021-11-15 20:01:47 | ||
Description: | ||
''' | ||
|
||
import cv2 | ||
import numpy as np | ||
from skimage import transform as trans | ||
|
||
src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007], | ||
[51.157, 89.050], [57.025, 89.702]], | ||
dtype=np.float32) | ||
#<--left | ||
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111], | ||
[45.177, 86.190], [64.246, 86.758]], | ||
dtype=np.float32) | ||
|
||
#---frontal | ||
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493], | ||
[42.463, 87.010], [69.537, 87.010]], | ||
dtype=np.float32) | ||
|
||
#-->right | ||
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111], | ||
[48.167, 86.758], [67.236, 86.190]], | ||
dtype=np.float32) | ||
|
||
#-->right profile | ||
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007], | ||
[55.388, 89.702], [61.257, 89.050]], | ||
dtype=np.float32) | ||
|
||
src = np.array([src1, src2, src3, src4, src5]) | ||
src_map = src | ||
|
||
ffhq_src = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935], | ||
[201.26117, 371.41043], [313.08905, 371.15118]]) | ||
ffhq_src = np.expand_dims(ffhq_src, axis=0) | ||
|
||
# arcface_src = np.array( | ||
# [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], | ||
# [41.5493, 92.3655], [70.7299, 92.2041]], | ||
# dtype=np.float32) | ||
|
||
# arcface_src = np.expand_dims(arcface_src, axis=0) | ||
|
||
# In[66]: | ||
|
||
|
||
# lmk is prediction; src is template | ||
def estimate_norm(lmk, image_size=112, mode='ffhq'): | ||
assert lmk.shape == (5, 2) | ||
tform = trans.SimilarityTransform() | ||
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1) | ||
min_M = [] | ||
min_index = [] | ||
min_error = float('inf') | ||
if mode == 'ffhq': | ||
# assert image_size == 112 | ||
src = ffhq_src * image_size / 512 | ||
else: | ||
src = src_map * image_size / 112 | ||
for i in np.arange(src.shape[0]): | ||
tform.estimate(lmk, src[i]) | ||
M = tform.params[0:2, :] | ||
results = np.dot(M, lmk_tran.T) | ||
results = results.T | ||
error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1))) | ||
# print(error) | ||
if error < min_error: | ||
min_error = error | ||
min_M = M | ||
min_index = i | ||
return min_M, min_index | ||
|
||
|
||
def norm_crop(img, landmark, image_size=112, mode='ffhq'): | ||
if mode == 'Both': | ||
M_None, _ = estimate_norm(landmark, image_size, mode = 'newarc') | ||
M_ffhq, _ = estimate_norm(landmark, image_size, mode='ffhq') | ||
warped_None = cv2.warpAffine(img, M_None, (image_size, image_size), borderValue=0.0) | ||
warped_ffhq = cv2.warpAffine(img, M_ffhq, (image_size, image_size), borderValue=0.0) | ||
return warped_ffhq, warped_None | ||
else: | ||
M, pose_index = estimate_norm(landmark, image_size, mode) | ||
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) | ||
return warped | ||
|
||
def square_crop(im, S): | ||
if im.shape[0] > im.shape[1]: | ||
height = S | ||
width = int(float(im.shape[1]) / im.shape[0] * S) | ||
scale = float(S) / im.shape[0] | ||
else: | ||
width = S | ||
height = int(float(im.shape[0]) / im.shape[1] * S) | ||
scale = float(S) / im.shape[1] | ||
resized_im = cv2.resize(im, (width, height)) | ||
det_im = np.zeros((S, S, 3), dtype=np.uint8) | ||
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im | ||
return det_im, scale | ||
|
||
|
||
def transform(data, center, output_size, scale, rotation): | ||
scale_ratio = scale | ||
rot = float(rotation) * np.pi / 180.0 | ||
#translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) | ||
t1 = trans.SimilarityTransform(scale=scale_ratio) | ||
cx = center[0] * scale_ratio | ||
cy = center[1] * scale_ratio | ||
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) | ||
t3 = trans.SimilarityTransform(rotation=rot) | ||
t4 = trans.SimilarityTransform(translation=(output_size / 2, | ||
output_size / 2)) | ||
t = t1 + t2 + t3 + t4 | ||
M = t.params[0:2] | ||
cropped = cv2.warpAffine(data, | ||
M, (output_size, output_size), | ||
borderValue=0.0) | ||
return cropped, M | ||
|
||
|
||
def trans_points2d(pts, M): | ||
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | ||
for i in range(pts.shape[0]): | ||
pt = pts[i] | ||
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) | ||
new_pt = np.dot(M, new_pt) | ||
#print('new_pt', new_pt.shape, new_pt) | ||
new_pts[i] = new_pt[0:2] | ||
|
||
return new_pts | ||
|
||
|
||
def trans_points3d(pts, M): | ||
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) | ||
#print(scale) | ||
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | ||
for i in range(pts.shape[0]): | ||
pt = pts[i] | ||
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) | ||
new_pt = np.dot(M, new_pt) | ||
#print('new_pt', new_pt.shape, new_pt) | ||
new_pts[i][0:2] = new_pt[0:2] | ||
new_pts[i][2] = pts[i][2] * scale | ||
|
||
return new_pts | ||
|
||
|
||
def trans_points(pts, M): | ||
if pts.shape[1] == 2: | ||
return trans_points2d(pts, M) | ||
else: | ||
return trans_points3d(pts, M) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.