LLM4Mat-Bench is the largest benchmark to date for evaluating the performance of large language models (LLMs) for materials property prediction.
LLM4Mat-Bench Statistics. *https://www.snumat.com/apis
git clone https://github.com/vertaix/LLM4Mat-Bench.git
cd LLM4Mat-Bench
conda create -n <environment_name> requirement.txt
conda activate <environment_name>
- Download the LLM4Mat-Bench data from this link. Each dataset includes a fixed train/validation/test split for reproducibility and fair model comparison.
- Save the data into data folder where LLM4Mat-Bench is the parent directory.
- Download the LLM-Prop and MatBERT checkpoints from this link.
- Save the checkpoints folder into LLM4Mat-Bench directory.
Add any modification to the following scripts to evaluate.sh
#!/usr/bin/env bash
DATA_PATH='data/' # where LLM4Mat_Bench data is saved
RESULTS_PATH='results/' # where to save the results
CHECKPOINTS_PATH='checkpoints/' # where model weights were saved
MODEL_NAME='llmprop' # or 'matbert'
DATASET_NAME='mp' # any dataset name in LLM4Mat_Bench
INPUT_TYPE='formula' # other values: 'cif_structure' and 'description'
PROPERTY_NAME='band_gap' # any property name in $DATASET_NAME. Please check the property names associated with each dataset first
python code/llmprop_and_matbert/evaluate.py \
--data_path $DATA_PATH \
--results_path $RESULTS_PATH \
--checkpoints_path $CHECKPOINTS_PATH \
--model_name $MODEL_NAME \
--dataset_name $DATASET_NAME \
--input_type $INPUT_TYPE \
--property_name $PROPERTY_NAME
Then run
bash scripts/evaluate.sh
Add any modification to the following scripts to train.sh
#!/usr/bin/env bash
DATA_PATH='data/' # where LLM4Mat_Bench data is saved
RESULTS_PATH='results/' # where to save the results
CHECKPOINTS_PATH='checkpoints/' # where to save model weights
MODEL_NAME='llmprop' # or 'matbert'
DATASET_NAME='mp' # any dataset name in LLM4Mat_Bench
INPUT_TYPE='formula' # other values: 'cif_structure' and 'description'
PROPERTY_NAME='band_gap' # any property name in $DATASET_NAME. Please check the property names associated with each dataset first
MAX_LEN=256 # for testing purposes only, the default value is 888 while 2000 has shown to give the best performance
EPOCHS=5 #for testing purposes only, the default value is 200
python code/llmprop_and_matbert/train.py \
--data_path $DATA_PATH \
--results_path $RESULTS_PATH \
--checkpoints_path $CHECKPOINTS_PATH \
--model_name $MODEL_NAME \
--dataset_name $DATASET_NAME \
--input_type $INPUT_TYPE \
--property_name $PROPERTY_NAME \
--max_len $MAX_LEN \
--epochs $EPOCHS
Then run
bash scripts/train.sh
Add any modification to the following scripts to llama_inference.sh
#!/usr/bin/env bash
DATA_PATH='data/' # where LLM4Mat_Bench data is saved
RESULTS_PATH='results/' # where to save the results
DATASET_NAME='mp' # any dataset name in LLM4Mat_Bench
INPUT_TYPE='formula' # other values: 'cif_structure' and 'description'
PROPERTY_NAME='band_gap' # any property name in $DATASET_NAME. Please check the property names associated with each dataset first
PROMPT_TYPE='zero_shot' # 'few_shot' can also be used here which let llama see five examples before it generates the answer
MAX_LEN=800 # max_len and batch_size can be modified according to the available resources
BATCH_SIZE=8
python code/llama/llama_inference.py \
--data_path $DATA_PATH \
--results_path $RESULTS_PATH \
--dataset_name $DATASET_NAME \
--input_type $INPUT_TYPE \
--property_name $PROPERTY_NAME \
--prompt_type $PROMPT_TYPE \
--max_len $MAX_LEN \
--batch_size $BATCH_SIZE
Then run
bash scripts/llama_inference.sh
After running bash scripts/llama_inference.sh
, add any modification to the following scripts to llama_evaluate.sh
#!/usr/bin/env bash
DATA_PATH='data/' # where LLM4Mat_Bench data is saved
RESULTS_PATH='results/' # where to save the results
DATASET_NAME='mp' # any dataset name in LLM4Mat_Bench
INPUT_TYPE='formula' # other values: 'cif_structure' and 'description'
PROPERTY_NAME='band_gap' # any property name in $DATASET_NAME. Please check the property names associated with each dataset first
PROMPT_TYPE='zero_shot' # 'few_shot' can also be used here which let llama see five examples before it generates the answer
MAX_LEN=800 # max_len and batch_size can be modified according to the available resources
BATCH_SIZE=8
MIN_SAMPLES=2 # minimum number of valid outputs from llama (the default number is 10)
python code/llama/evaluate.py \
--data_path $DATA_PATH \
--results_path $RESULTS_PATH \
--dataset_name $DATASET_NAME \
--input_type $INPUT_TYPE \
--property_name $PROPERTY_NAME \
--prompt_type $PROMPT_TYPE \
--max_len $MAX_LEN \
--batch_size $BATCH_SIZE \
--min_samples $MIN_SAMPLES
Then run
bash scripts/llama_evaluate.sh
The data LICENSE belongs to the original creators of each dataset/database.
Input | Model | MP | JARVIS-DFT | GNoME | hMOF | Cantor HEA | JARVIS-QETB | OQMD | QMOF | SNUMAT | OMDB | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Regression | Classification | Regression | Regression | Regression | Regression | Regression | Regression | Regression | Classification | Regression | Regression | ||
8 tasks | 2 tasks | 20 tasks | 6 tasks | 7 tasks | 6 tasks | 4 tasks | 2 tasks | 4 tasks | 4 tasks | 3 tasks | 1 task | ||
CIF | CGCNN (baseline) | 5.319 | 0.846 | 7.048 | 19.478 | 2.257 | 17.780 | 61.729 | 14.496 | 3.076 | 1.973 | 0.722 | 2.751 |
Comp. | Llama 2-7b-chat:0S | 0.389 | 0.491 | Inval. | 0.164 | 0.174 | 0.034 | 0.188 | 0.105 | 0.303 | 0.940 | Inval. | 0.885 |
Llama 2-7b-chat:5S | 0.627 | 0.507 | 0.704 | 0.499 | 0.655 | 0.867 | 1.047 | 1.160 | 0.932 | 1.157 | 0.466 | 1.009 | |
MatBERT-109M | 5.317 | 0.722 | 4.103 | 12.834 | 1.430 | 6.769 | 11.952 | 5.772 | 2.049 | 1.828 | 0.712 | 1.554 | |
LLM-Prop-35M | 4.394 | 0.691 | 2.912 | 15.599 | 1.479 | 8.400 | 59.443 | 6.020 | 1.958 | 1.509 | 0.719 | 1.507 | |
CIF | Llama 2-7b-chat:0S | 0.392 | 0.501 | 0.216 | 6.746 | 0.214 | 0.022 | 0.278 | 0.028 | 0.119 | 0.682 | 0.489 | 0.159 |
Llama 2-7b-chat:5S | Inval. | 0.502 | Inval. | Inval. | Inval. | Inval. | 1.152 | 1.391 | Inval. | Inval. | 0.474 | 0.930 | |
MatBERT-109M | 7.452 | 0.750 | 6.211 | 14.227 | 1.514 | 9.958 | 47.687 | 10.521 | 3.024 | 2.131 | 0.717 | 1.777 | |
LLM-Prop-35M | 8.554 | 0.738 | 6.756 | 16.032 | 1.623 | 15.728 | 97.919 | 11.041 | 3.076 | 1.829 | 0.660 | 1.777 | |
Descr. | Llama 2-7b-chat:0S | 0.437 | 0.500 | 0.247 | 0.336 | 0.193 | 0.069 | 0.264 | 0.106 | 0.152 | 0.883 | Inval. | 0.155 |
Llama 2-7b-chat:5S | 0.635 | 0.502 | 0.703 | 0.470 | 0.653 | 0.820 | 0.980 | 1.230 | 0.946 | 1.040 | 0.568 | 1.001 | |
MatBERT-109M | 7.651 | 0.735 | 6.083 | 15.558 | 1.558 | 9.976 | 46.586 | 11.027 | 3.055 | 2.152 | 0.730 | 1.847 | |
LLM-Prop-35M | 9.116 | 0.742 | 7.204 | 16.224 | 1.706 | 15.926 | 93.001 | 9.995 | 3.016 | 1.950 | 0.735 | 1.656 |
Input | Model | MP Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FEPA | Bandgap | EPA | Ehull | Efermi | Density | Density Atomic | Volume | Is Stable | Is Gab Direct | ||
145.2K | 145.3K | 145.2K | 145.2K | 145.2K | 145.2K | 145.2K | 145.2K | 145.2K | 145.2K | ||
CIF | CGCNN (baseline) | 8.151 | 3.255 | 7.224 | 3.874 | 3.689 | 8.773 | 5.888 | 1.703 | 0.882 | 0.810 |
Comp. | Llama 2-7b-chat:0S | 0.008 | 0.623 | 0.009 | 0.001 | 0.003 | 0.967 | 0.754 | 0.747 | 0.500 | 0.482 |
Llama 2-7b-chat:5S | 0.33 | 1.217 | 0.239 | 0.132 | 0.706 | 0.899 | 0.724 | 0.771 | 0.502 | 0.512 | |
MatBERT-109M | 8.151 | 2.971 | 9.32 | 2.583 | 3.527 | 7.626 | 5.26 | 3.099 | 0.764 | 0.681 | |
LLM-Prop-35M | 7.482 | 2.345 | 7.437 | 2.006 | 3.159 | 6.682 | 3.523 | 2.521 | 0.746 | 0.636 | |
CIF | Llama 2-7b-chat:0S | 0.032 | 0.135 | 0.022 | 0.001 | 0.015 | 0.97 | 0.549 | 1.41 | 0.503 | 0.499 |
Llama 2-7b-chat:5S | Inval. | 1.111 | 0.289 | Inval. | 0.685 | 0.98 | 0.99 | 0.926 | 0.498 | 0.506 | |
MatBERT-109M | 11.017 | 3.423 | 13.244 | 3.808 | 4.435 | 10.426 | 6.686 | 6.58 | 0.790 | 0.710 | |
LLM-Prop-35M | 14.322 | 3.758 | 17.354 | 2.182 | 4.515 | 13.834 | 4.913 | 7.556 | 0.776 | 0.700 | |
Descr. | Llama 2-7b-chat:0S | 0.019 | 0.633 | 0.023 | 0.001 | 0.008 | 1.31 | 0.693 | 0.807 | 0.500 | 0.500 |
Llama 2-7b-chat:5S | 0.394 | 1.061 | 0.297 | 0.247 | 0.684 | 0.916 | 0.782 | 0.704 | 0.500 | 0.504 | |
MatBERT-109M | 11.935 | 3.524 | 13.851 | 4.085 | 4.323 | 9.9 | 6.899 | 6.693 | 0.794 | 0.713 | |
LLM-Prop-35M | 15.913 | 3.931 | 18.412 | 2.74 | 4.598 | 14.388 | 4.063 | 8.888 | 0.794 | 0.690 |
Input | Model | JARVIS-DFT Dataset | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FEPA | Bandgap (OPT) | Tot. En. | Ehull | Bandgap (MBJ) | Kv | Gv | SLME | Spillage | εx (OPT) | ε (DFPT) | Max. Piezo. (dij) | Max. Piezo. (eij) | Max. EFG | Exf. En. | Avg. me | n-Seebeck | n-PF | p-Seebeck | p-PF | ||
75.9K | 75.9K | 75.9K | 75.9K | 19.8K | 23.8K | 23.8K | 9.7K | 11.3K | 18.2K | 4.7K | 3.3K | 4.7K | 11.8K | 0.8K | 17.6K | 23.2K | 23.2K | 23.2K | 23.2K | ||
CIF | CGCNN (baseline) | 13.615 | 4.797 | 22.906 | 1.573 | 4.497 | 3.715 | 2.337 | 1.862 | 1.271 | 2.425 | 1.12 | 0.418 | 1.291 | 1.787 | 0.842 | 1.796 | 2.23 | 1.573 | 3.963 | 1.59 |
Comp. | Llama 2-7b-chat:0S | 0.021 | 0.011 | 0.02 | 0.005 | 0.92 | 0.428 | 0.374 | 0.148 | Inval. | 0.18 | 0.012 | 0.121 | 0.001 | 0.141 | 0.384 | 0.028 | 0.874 | 0.801 | 0.971 | 0.874 |
Llama 2-7b-chat:5S | 0.886 | 0.011 | 0.02 | 1.292 | 0.979 | 0.88 | 0.992 | 0.456 | 0.85 | 1.148 | 1.416 | 1.289 | 1.305 | 0.765 | 0.512 | 0.535 | 1.008 | 1.04 | 0.93 | 0.568 | |
MatBERT-109M | 6.808 | 4.083 | 9.21 | 2.786 | 3.755 | 2.906 | 1.928 | 1.801 | 1.243 | 2.017 | 1.533 | 1.464 | 1.426 | 1.658 | 1.124 | 2.093 | 1.908 | 1.318 | 2.752 | 1.356 | |
LLM-Prop-35M | 4.765 | 2.621 | 5.936 | 2.073 | 2.922 | 2.162 | 1.654 | 1.575 | 1.14 | 1.734 | 1.454 | 1.447 | 1.573 | 1.38 | 1.042 | 1.658 | 1.725 | 1.145 | 2.233 | 1.285 | |
CIF | Llama 2-7b-chat:0S | 0.023 | 0.011 | 0.02 | 0.002 | 0.193 | 0.278 | 0.358 | 0.186 | 0.702 | 0.781 | 0.033 | 0.104 | 0.001 | 0.246 | 0.411 | 0.041 | 0.429 | 0.766 | 0.83 | 0.826 |
Llama 2-7b-chat:5S | 0.859 | Inval. | Inval. | 1.173 | 1.054 | 0.874 | 0.91 | 0.486 | 0.916 | 1.253 | Inval. | Inval. | Inval. | 0.796 | 0.51 | Inval. | 1.039 | 1.396 | Inval. | Inval. | |
MatBERT-109M | 10.211 | 5.483 | 15.673 | 4.862 | 5.344 | 4.283 | 2.6 | 2.208 | 1.444 | 2.408 | 1.509 | 1.758 | 2.405 | 2.143 | 1.374 | 2.45 | 2.268 | 1.446 | 3.337 | 1.476 | |
LLM-Prop-35M | 12.996 | 3.331 | 22.058 | 2.648 | 4.93 | 4.121 | 2.409 | 2.175 | 1.37 | 2.135 | 1.578 | 2.103 | 2.405 | 1.936 | 1.044 | 1.796 | 1.955 | 1.332 | 2.503 | 1.399 | |
Descr. | Llama 2-7b-chat:0S | 0.007 | 0.011 | 0.02 | 0.004 | 0.94 | 0.498 | 0.382 | 0.07 | 0.135 | 0.647 | 0.08 | 0.266 | 0.001 | 0.138 | 0.285 | 0.019 | 0.769 | 0.793 | 0.825 | 0.829 |
Llama 2-7b-chat:5S | 0.845 | 0.011 | 0.02 | 1.273 | 1.033 | 0.87 | 0.969 | 0.461 | 0.857 | 1.201 | 1.649 | 1.174 | 1.152 | 0.806 | 0.661 | 0.523 | 1.098 | 1.024 | 0.948 | 0.563 | |
MatBERT-109M | 10.211 | 5.33 | 15.141 | 4.691 | 5.01 | 4.252 | 2.623 | 2.178 | 1.452 | 2.384 | 1.534 | 1.807 | 2.556 | 2.081 | 1.36 | 2.597 | 2.241 | 1.432 | 3.26 | 1.565 | |
LLM-Prop-35M | 12.614 | 3.427 | 23.509 | 4.532 | 4.983 | 4.128 | 2.419 | 2.061 | 1.307 | 2.334 | 1.64 | 2.116 | 2.315 | 1.978 | 1.168 | 1.858 | 2.154 | 1.364 | 2.61 | 1.407 |
Input | Model | SNUMAT Dataset | ||||||
---|---|---|---|---|---|---|---|---|
Bandgap GGA | Bandgap HSE | Bandgap GGA Optical | Bandgap HSE Optical | Is Direct | Is Direct HSE | SOC | ||
10.3K | 10.3K | 10.3K | 10.3K | 10.3K | 10.3K | 10.3K | ||
CIF | CGCNN (baseline) | 2.075 | 2.257 | 1.727 | 1.835 | 0.691 | 0.675 | 0.800 |
Comp. | Llama 2-7b-chat:0S | 0.797 | 0.948 | 1.156 | 0.859 | 0.503 | 0.484 | Inval. |
Llama 2-7b-chat:5S | 1.267 | 1.327 | 0.862 | 1.174 | 0.475 | 0.468 | 0.455 | |
MatBERT-109M | 1.899 | 1.975 | 1.646 | 1.793 | 0.671 | 0.645 | 0.820 | |
LLM-Prop-35M | 1.533 | 1.621 | 1.392 | 1.491 | 0.647 | 0.624 | 0.829 | |
CIF | Llama 2-7b-chat:0S | 0.346 | 0.454 | 1.09 | 0.838 | 0.479 | 0.488 | 0.500 |
Llama 2-7b-chat:5S | Inval. | Inval. | Inval. | Inval. | 0.494 | 0.500 | 0.427 | |
MatBERT-109M | 2.28 | 2.472 | 1.885 | 1.889 | 0.677 | 0.650 | 0.823 | |
LLM-Prop-35M | 1.23 | 2.401 | 1.786 | 1.9 | 0.661 | 0.664 | 0.656 | |
Descr. | Llama 2-7b-chat:0S | 0.802 | 0.941 | 1.013 | 0.779 | 0.499 | 0.509 | Inval. |
Llama 2-7b-chat:5S | 0.774 | 1.315 | 0.901 | 1.172 | 0.594 | 0.623 | 0.486 | |
MatBERT-109M | 2.298 | 2.433 | 1.901 | 1.978 | 0.683 | 0.645 | 0.862 | |
LLM-Prop-35M | 2.251 | 2.142 | 1.84 | 1.569 | 0.681 | 0.657 | 0.866 |
Input | Model | GNoME Dataset | |||||
---|---|---|---|---|---|---|---|
FEPA | Bandgap | DEPA | Tot. En. | Volume | Density | ||
376.2K | 282.7K | 376.2K | 282.7K | 282.7K | 282.7K | ||
CIF | CGCNN (baseline) | 34.57 | 8.549 | 2.787 | 7.443 | 7.967 | 56.077 |
Comp. | Llama 2-7b-chat:0S | 0.002 | 0.177 | 0.0 | 0.088 | 0.455 | 0.368 |
Llama 2-7b-chat:5S | 0.194 | 0.086 | 0.255 | 0.765 | 1.006 | 0.865 | |
MatBERT-109M | 30.248 | 4.692 | 2.787 | 8.57 | 13.157 | 15.145 | |
LLM-Prop-35M | 25.472 | 3.735 | 1.858 | 21.624 | 16.556 | 25.615 | |
CIF | Llama 2-7b-chat:0S | 0.003 | 0.045 | 0.0 | 0.706 | 43.331 | 0.794 |
Llama 2-7b-chat:5S | Inval. | 0.087 | Inval. | Inval. | 1.029 | 0.878 | |
MatBERT-109M | 24.199 | 9.16 | 3.716 | 15.309 | 16.691 | 16.467 | |
LLM-Prop-35M | 28.469 | 3.926 | 3.344 | 17.837 | 17.082 | 25.615 | |
Descr. | Llama 2-7b-chat:0S | 0.002 | 0.114 | 0.0 | 0.661 | 0.654 | 0.805 |
Llama 2-7b-chat:5S | 0.192 | 0.086 | 0.106 | 0.75 | 1.006 | 0.891 | |
MatBERT-109M | 30.248 | 5.829 | 3.716 | 18.205 | 17.824 | 16.599 | |
LLM-Prop-35M | 28.469 | 5.27 | 3.716 | 17.02 | 17.02 | 25.936 |
Input | Model | hMOF Dataset | ||||||
---|---|---|---|---|---|---|---|---|
Max CO2 | Min CO2 | LCD | PLD | Void Fraction | Surface Area m2g | Surface Area m2cm3 | ||
132.7K | 132.7K | 132.7K | 132.7K | 132.7K | 132.7K | 132.7K | ||
CIF | CGCNN (baseline) | 1.719 | 1.617 | 1.989 | 1.757 | 2.912 | 3.765 | 2.039 |
Comp. | Llama 2-7b-chat:0S | 0.011 | 0.002 | 0.009 | 0.008 | 0.5 | 0.454 | 0.233 |
Llama 2-7b-chat:5S | 0.679 | 0.058 | 0.949 | 1.026 | 0.945 | 0.567 | 0.366 | |
MatBERT-109M | 1.335 | 1.41 | 1.435 | 1.378 | 1.57 | 1.517 | 1.367 | |
LLM-Prop-35M | 1.41 | 1.392 | 1.432 | 1.468 | 1.672 | 1.657 | 1.321 | |
CIF | Llama 2-7b-chat:0S | 0.017 | 0.003 | 0.016 | 0.011 | 0.549 | 0.54 | 0.359 |
Llama 2-7b-chat:5S | Inval. | Inval. | 0.951 | 1.067 | Inval. | Inval. | Inval. | |
MatBERT-109M | 1.421 | 1.428 | 1.544 | 1.482 | 1.641 | 1.622 | 1.461 | |
LLM-Prop-35M | 1.564 | 1.41 | 1.753 | 1.435 | 1.9 | 1.926 | 1.374 | |
Descr. | Llama 2-7b-chat:0S | 0.129 | 0.014 | 0.026 | 0.006 | 0.382 | 0.497 | 0.299 |
Llama 2-7b-chat:5S | 0.684 | 0.058 | 0.955 | 1.006 | 0.931 | 0.571 | 0.37 | |
MatBERT-109M | 1.438 | 1.466 | 1.602 | 1.511 | 1.719 | 1.697 | 1.475 | |
LLM-Prop-35M | 1.659 | 1.486 | 1.623 | 1.789 | 1.736 | 2.144 | 1.508 |
Input | Model | Cantor HEA Dataset | |||
---|---|---|---|---|---|
FEPA | EPA | Ehull | VPA | ||
84.0K | 84.0K | 84.0K | 84.0K | ||
CIF | CGCNN (baseline) | 9.036 | 49.521 | 9.697 | 2.869 |
Comp. | Llama 2-7b-chat:0S | 0.005 | 0.098 | 0.003 | 0.031 |
Llama 2-7b-chat:5S | 0.896 | 0.658 | 0.928 | 0.986 | |
MatBERT-109M | 3.286 | 16.17 | 5.134 | 2.489 | |
LLM-Prop-35M | 3.286 | 22.638 | 5.134 | 2.543 | |
CIF | Llama 2-7b-chat:0S | 0.001 | 0.084 | 0.0 | 0.004 |
Llama 2-7b-chat:5S | Inval. | Inval. | Inval. | Inval. | |
MatBERT-109M | 7.229 | 17.607 | 9.187 | 5.809 | |
LLM-Prop-35M | 8.341 | 36.015 | 11.636 | 6.919 | |
Descr. | Llama 2-7b-chat:0S | 0.001 | 0.101 | 0.164 | 0.011 |
Llama 2-7b-chat:5S | 0.797 | 0.615 | 0.938 | 0.93 | |
MatBERT-109M | 7.229 | 17.607 | 9.187 | 5.881 | |
LLM-Prop-35M | 8.341 | 36.015 | 11.636 | 7.713 |
Input | Model | QMOF Dataset | |||
---|---|---|---|---|---|
Bandgap | Tot. En. | LCD | PLD | ||
7.6K | 7.6K | 7.6K | 7.6K | ||
CIF | CGCNN (baseline) | 2.431 | 1.489 | 4.068 | 4.317 |
Comp. | Llama 2-7b-chat:0S | 0.901 | 0.26 | 0.045 | 0.009 |
Llama 2-7b-chat:5S | 0.648 | 0.754 | 1.241 | 1.086 | |
MatBERT-109M | 1.823 | 1.695 | 2.329 | 2.349 | |
LLM-Prop-35M | 1.759 | 1.621 | 2.293 | 2.157 | |
CIF | Llama 2-7b-chat:0S | 0.201 | 0.244 | 0.02 | 0.011 |
Llama 2-7b-chat:5S | Inval. | Inval. | Inval. | Inval. | |
MatBERT-109M | 1.994 | 4.378 | 2.908 | 2.818 | |
LLM-Prop-35M | 2.166 | 4.323 | 2.947 | 2.87 | |
Descr. | Llama 2-7b-chat:0S | 0.358 | 0.217 | 0.025 | 0.006 |
Llama 2-7b-chat:5S | 0.777 | 0.713 | 1.125 | 1.17 | |
MatBERT-109M | 2.166 | 4.133 | 2.981 | 2.941 | |
LLM-Prop-35M | 2.091 | 4.312 | 2.831 | 2.829 |
Input | Model | JARVIS-QETB Dataset | |||
---|---|---|---|---|---|
FEPA | EPA | Tot. En. | Ind. Bandgap | ||
623.9K | 623.9K | 623.9K | 623.9K | ||
CIF | CGCNN (baseline) | 1.964 | 228.201 | 11.218 | 5.534 |
Comp. | Llama 2-7b-chat:0S | 0.003 | 0.369 | 0.172 | 0.21 |
Llama 2-7b-chat:5S | 0.812 | 1.037 | 1.032 | 1.306 | |
MatBERT-109M | 1.431 | 37.979 | 8.19 | 0.21 | |
LLM-Prop-35M | 2.846 | 211.757 | 21.309 | 1.861 | |
CIF | Llama 2-7b-chat:0S | 0.003 | 0.412 | 0.656 | 0.04 |
Llama 2-7b-chat:5S | 0.8 | 1.024 | 1.076 | 1.71 | |
MatBERT-109M | 24.72 | 135.156 | 26.094 | 4.779 | |
LLM-Prop-35M | 23.346 | 318.291 | 48.192 | 1.845 | |
Descr. | Llama 2-7b-chat:0S | 0.003 | 0.408 | 0.484 | 0.16 |
Llama 2-7b-chat:5S | 0.85 | 1.015 | 1.035 | 1.021 | |
MatBERT-109M | 26.265 | 122.884 | 29.409 | 7.788 | |
LLM-Prop-35M | 22.513 | 312.218 | 35.43 | 1.845 |
Input | Model | OQMD Dataset | |
---|---|---|---|
FEPA | Bandgap | ||
963.5K | 963.5K | ||
CIF | CGCNN (baseline) | 22.291 | 6.701 |
Comp. | Llama 2-7b-chat:0S | 0.019 | 0.192 |
Llama 2-7b-chat:5S | 1.013 | 1.306 | |
MatBERT-109M | 7.662 | 3.883 | |
LLM-Prop-35M | 9.195 | 2.845 | |
CIF | Llama 2-7b-chat:0S | 0.009 | 0.047 |
Llama 2-7b-chat:5S | 1.051 | 1.731 | |
MatBERT-109M | 13.879 | 7.163 | |
LLM-Prop-35M | 18.861 | 3.22 | |
Descr. | Llama 2-7b-chat:0S | 0.025 | 0.187 |
Llama 2-7b-chat:5S | 0.991 | 1.468 | |
MatBERT-109M | 15.012 | 7.041 | |
LLM-Prop-35M | 16.346 | 3.644 |
Input | Model | OMDB Dataset |
---|---|---|
Bandgap | ||
12.1K | ||
CIF | CGCNN (baseline) | 2.751 |
Comp. | Llama 2-7b-chat:0S | 0.886 |
Llama 2-7b-chat:5S | 1.009 | |
MatBERT-109M | 1.554 | |
LLM-Prop-35M | 1.507 | |
CIF | Llama 2-7b-chat:0S | 0.159 |
Llama 2-7b-chat:5S | 0.930 | |
MatBERT-109M | 1.777 | |
LLM-Prop-35M | 1.777 | |
Descr. | Llama 2-7b-chat:0S | 0.155 |
Llama 2-7b-chat:5S | 1.002 | |
MatBERT-109M | 1.847 | |
LLM-Prop-35M | 1.656 |