Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions applications/Chat/coati/trainer/strategies/sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ def __init__(self, dataset, num_replicas: int, rank: int) -> None:
assert len(indices) == self.num_samples
self.indices = indices


def sample(self, batch_size: int) -> list:
sampled_indices = np.random.choice(self.indices, batch_size, replace=False)
return [self.dataset[idx] for idx in sampled_indices]
164 changes: 164 additions & 0 deletions applications/Chat/examples/ray/1mmt_prompt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
import argparse
import os
import socket
from functools import partial

import pandas as pd
import ray
import torch
from coati.ray.detached_trainer_ppo import DetachedPPOTrainer
from coati.ray.experience_maker_holder import ExperienceMakerHolder
from coati.ray.utils import (
get_actor_from_args,
get_critic_from_args,
get_reward_model_from_args,
get_strategy_from_args,
get_tokenizer_from_args
)

from torch.utils.data import DataLoader

def get_free_port():
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(('', 0))
return s.getsockname()[1]


def get_local_ip():
with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s:
s.connect(('8.8.8.8', 80))
return s.getsockname()[0]

def main(args):
master_addr = str(get_local_ip())
# trainer_env_info
trainer_port = str(get_free_port())
env_info_trainers = [{
'local_rank': '0',
'rank': str(rank),
'world_size': str(args.num_trainers),
'master_port': trainer_port,
'master_addr': master_addr
} for rank in range(args.num_trainers)]

# maker_env_info
maker_port = str(get_free_port())
env_info_maker = {
'local_rank': '0',
'rank': '0',
'world_size': '1',
'master_port': maker_port,
'master_addr': master_addr
}

# configure tokenizer
tokenizer = get_tokenizer_from_args(args.model)

def trainer_model_fn():
actor = get_actor_from_args(args.model, args.pretrain).half().cuda()
critic = get_critic_from_args(args.model, args.critic_pretrain).half().cuda()
return actor, critic

# configure Trainer
trainer_refs = [
DetachedPPOTrainer.options(name=f"trainer{i}", num_gpus=1, max_concurrency=2).remote(
experience_maker_holder_name_list=["maker1"],
strategy_fn=partial(get_strategy_from_args, args.trainer_strategy),
model_fn=trainer_model_fn,
env_info=env_info_trainer,
train_batch_size=args.train_batch_size,
buffer_limit=16,
eval_performance=True,
debug=args.debug,
) for i, env_info_trainer in enumerate(env_info_trainers)
]

def model_fn():
actor = get_actor_from_args(args.model, args.pretrain).half().cuda()
critic = get_critic_from_args(args.model, args.critic_pretrain).half().cuda()
reward_model = get_reward_model_from_args(args.model, args.critic_pretrain).half().cuda()
initial_model = get_actor_from_args(args.model, args.pretrain).half().cuda()
return actor, critic, reward_model, initial_model

# configure Experience Maker
experience_holder_ref = ExperienceMakerHolder.options(name="maker1", num_gpus=1, max_concurrency=2).remote(
detached_trainer_name_list=[f'trainer{i}' for i in range(args.num_trainers)],
strategy_fn=partial(get_strategy_from_args, args.maker_strategy),
model_fn=model_fn,
env_info=env_info_maker,
experience_batch_size=args.experience_batch_size,
kl_coef=0.1,
debug=args.debug,
# sync_models_from_trainers=True,
# generation kwargs:
max_length=512,
do_sample=True,
temperature=1.0,
top_k=50,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
eval_performance=True,
use_cache=True,
)



# uncomment this function if sync_models_from_trainers is True
# ray.get([
# trainer_ref.sync_models_to_remote_makers.remote()
# for trainer_ref in trainer_refs
# ])

wait_tasks = []

total_steps = args.experience_batch_size * args.experience_steps // (args.num_trainers * args.train_batch_size)
for trainer_ref in trainer_refs:
wait_tasks.append(
trainer_ref.fit.remote(total_steps, args.update_steps, args.train_epochs))


dataset_size = args.experience_batch_size * 4
from torch.utils.data import DataLoader

def build_dataloader():
def tokenize_fn(texts):
batch = tokenizer(texts, return_tensors='pt', max_length=96, padding='max_length', truncation=True)
return {k: v.cuda() for k, v in batch.items()}

dataset = pd.read_csv(args.prompt_path)['prompt']
dataloader = DataLoader(dataset=dataset,
batch_size=dataset_size,
shuffle=True,
collate_fn=tokenize_fn
)
return dataloader


wait_tasks.append(experience_holder_ref.workingloop.remote(build_dataloader,
num_steps=args.experience_steps))

ray.get(wait_tasks)


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--prompt_path', type=str, default=None)
parser.add_argument('--num_trainers', type=int, default=1)
parser.add_argument('--trainer_strategy',
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='naive')
parser.add_argument('--maker_strategy', choices=['naive'], default='naive')
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt'])
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--critic_pretrain', type=str, default=None)
parser.add_argument('--experience_steps', type=int, default=4)
parser.add_argument('--experience_batch_size', type=int, default=8)
parser.add_argument('--train_epochs', type=int, default=1)
parser.add_argument('--update_steps', type=int, default=2)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")

parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
ray.init(namespace=os.environ["RAY_NAMESPACE"])
main(args)