Skip to content
View valovpm's full-sized avatar

Block or report valovpm

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
valovpm/README.md

Table of Contents

Curriculum Vitae

Curriculum Vitae in English (PDF)

Curriculum Vitae in Russian (PDF)

Data Analyst / Data Scientist with experience in development, research, and analytics both in industry and academy. Strong knowledge of SQL, Python, and data analysis. Honest, responsible, driven, fluent Russian and English proficiency, honed by years of teaching and research.

Repositories

Professional development

Advanced AB-testing

Data Analyst

  • Analyzed novel newsfeed recommendation algorithm, designed to improve the key metric (CTR)
  • Performed A/B testing to demonstrate CTR deterioration with a new recommendation algorithm using: transformations of the initial data (Laplace smoothing, Poisson bootstrap, bucket transformation), normality criterias (Shapiro-Wilk, D'Agostino), distribution difference criterias (Student's T-test, Mann-Whitney U-test), SQL, ClickHouse, Python, pandas, matplotlib (Jupyter Notebook)
  • Demonstration of increasing of a key metric sensitivity using the linearization method (Jupyter Notebook)
  • A/A testing to check CTR consistency across different datasets (Jupyter Notebook)
  • ETL-pipelines for sending reports to ClickHouse and Telegram using Apache Airflow, Python, SQL (Airflow Graphs)
    • Pipeline for monitoring and sending a report in case of an anomaly in the metrics (Graph in Python)
    • Pipeline of a report to Telegram on key metrics of two products in different time slices (Graph in Python)
    • Pipeline of a report to Telegram on basic product metrics (DAU, views, likes, CTR) (Graph in Python)
    • Pipeline for sending a report to ClickHouse about the basic product metrics in different slices (Graph in Python)
  • Dashboards for visualization and analysis of key metrics using Apache Superset, ClickHouse, SQL (Dashboards)
    • Dashboard for analyzing the abnormal drop in the active audience of the newsfeed (Dashboard)
    • Dashboard for analyzing differences in the behavior of organic and advertising users (Dashboard)
    • Dashboard for analyzing basic product metrics of the newsfeed (likes, view, CTR, etc.) (Dashboard)
    • Dashboard for analyzing audience metrics of several products (DAU, MAU, WAU, etc.) (Dashboard)

Publications

  • Transferring Pareto Frontiers across Heterogeneous Hardware Environments
    • Designed and published a machine learning approach for approximating and transferring Pareto frontiers of systems' properties across different cloud environments, using Python ecosystem (pandas, scikit-learn, matplotlib)
    • Repository
    • Paper
    • Video
    • Slides
  • Transferring Performance Prediction Models Across Different Hardware Platforms
    • Designed and published a machine learning approach for generalizing performance prediction models of configurable systems across different hardware platforms, extensively using R (tidyr, dplyr, reshape2, ggplot2, etc)
    • Repository
    • Paper
  • Empirical Comparison of Regression Methods for Variability-Aware Performance Prediction
    • Designed and published a machine learning study on comparison of various performance prediction methods, while extensively using R ecosystem (tidyr, dplyr, reshape2, ggplot2, etc)
    • Repository
    • Paper

Tech Stack:

Python NumPy Pandas SciPy Plotly scikit-learn R

SQL MicrosoftSQLServer Postgres SQLite

Apache Airflow Anaconda Azure

LINUX Shell Script

LaTeX

📊 GitHub Stats:


Pinned Loading

  1. icpe2020 icpe2020 Public

    Transferring Pareto Frontiers across Heterogeneous Hardware Environments. Трансфер Парето-фронтов в гетерогенных аппаратных средах

    Python

  2. icpe2017 icpe2017 Public

    Transferring Performance Prediction Models Across Different Hardware Platforms. Трансфер моделей прогнозирования производительности между различными аппаратными платформами

    R

  3. newsfeed_ab_testing newsfeed_ab_testing Public

    Анализ нового алгоритма рекомендаций для новостной ленты с помощью A/A и A/B тестирования

    Jupyter Notebook

  4. newsfeed_airflow newsfeed_airflow Public

    Данный репозиторий содержит различные скрипты для формирования регулярных отчетов по ключевым метрикам продукта, используя Apache Airflow и Python, с последующей отправкой в ClickHouse или Telegram

    Python

  5. newsfeed_dashboards newsfeed_dashboards Public

    Дашборды для изучения аномалий в поведении аудитории и ключевых метрик продукта, состоящего из ленты новостей и мессенджера

  6. splc2015 splc2015 Public

    Empirical Comparison of Regression Methods for Variability-Aware Performance Prediction. Эмпирическое сравние регрессионных методов для предсказания производительности конфигурируемых систем

    R