🐍 Installation • 🚀 Features • 🌐 Webapp • 📙 Documentation • 🔍 License
The sinapsis-image-transforms module provides templates for applying various image transformations with Albumentations.
Install using your package manager of choice. We encourage the use of uv
Example with uv:
uv pip install sinapsis-image-transforms --extra-index-url https://pypi.sinapsis.techor with raw pip:
pip install sinapsis-image-transforms --extra-index-url https://pypi.sinapsis.techThe Sinapsis Image Transforms module provides a collection of templates for applying image transformations using Albumentations. These templates allow users to apply a wide range of augmentations, from simple operations like flipping and resizing to more advanced transformations such as elastic distortions and geometric warping.
Note
All templates share the following attributes:
apply_to_annotations(bool, optional): Determines whether transformations should also be applied to annotations like bounding boxes, keypoints, and masks. Defaults toFalse.bbox_params(dict[str, Any], optional): Configuration for transforming bounding boxes, following Albumentations'BboxParamsformat. Defaults toNone.keypoints_params(dict[str, Any], optional): Defines keypoint transformation settings using Albumentations'KeypointParams. Defaults toNone.additional_targets(dict[str, Any], optional): Specifies extra annotation types (e.g., segmentation masks) to be transformed alongside the image. Defaults to{"mask": "mask"}.
Additional transformation-specific attributes can be dynamically assigned through the class initialization dictionary (*_init attributes). These attributes correspond directly to the arguments used in Albumentations.
Tip
Use CLI command sinapsis info --all-template-names to show a list with all the available Template names installed with Sinapsis Image Transforms.
Tip
Use CLI command sinapsis info --example-template-config TEMPLATE_NAME to produce an example Agent config for the Template specified in TEMPLATE_NAME.
For example, for RotateWrapper use sinapsis info --example-template-config RotateWrapper to produce the following example config:
agent:
name: my_test_agent
templates:
- template_name: InputTemplate
class_name: InputTemplate
- template_name: RotateWrapper
class_name: RotateWrapper
template_input: InputTemplate
attributes:
apply_to_annotations: false
bbox_params: null
keypoints_params: null
additional_targets:
mask: mask
rotate_init:
limit: [-45, 45]
interpolation: 1
border_mode: 4
value: [0, 0, 0]
mask_value: null
rotate_method: "largest_box"
crop_border: false
fill_value: 0
mask_fill_value: 0
deterministic: true
p: 1.0📚 Example Usage
The following example demonstrates how to use Sinapsis Image Transforms to apply multiple image augmentations. This setup loads a dataset of images, applies horizontal flipping and elastic transformation, and saves the results. Below is the full YAML configuration, followed by a breakdown of each component.
Config
agent:
name: transforms_agent
templates:
- template_name: InputTemplate
class_name: InputTemplate
attributes: {}
- template_name: FolderImageDatasetCV2
class_name: FolderImageDatasetCV2
template_input: InputTemplate
attributes:
data_dir: my_dataset
- template_name: HorizontalFlip
class_name: HorizontalFlipWrapper
template_input: FolderImageDatasetCV2
attributes:
horizontalflip_init:
p: 1.0
- template_name: ElasticTransform
class_name: ElasticTransformWrapper
template_input: HorizontalFlip
attributes:
elastictransform_init:
mask_value: 150
p: 1.0
alpha: 100
sigma: 50
- template_name: ImageSaver
class_name: ImageSaver
template_input: ElasticTransform
attributes:
save_dir: results
extension: jpg[!IMPORTANT] Attributes specified under the
*_initkeys (e.g.,elastictransform_init,horizontalflip_init) correspond directly to the Albumentations transformation parameters. Ensure that values are assigned correctly according to the official Albumentations documentation, as they affect the behavior and performance of each transformation.The FolderImageDataserCV2 and ImageSaver correspond to sinapsis-data-readers and sinapsis-data-writers. If you want to use the example, please make sure you install the packages.
To run the config, use the CLI:
sinapsis run name_of_config.ymlThe webapp provides an interactive interface to visualize and experiment with image transformations in real time.
Important
To run the app you first need to clone this repository:
git clone git@github.com:Sinapsis-ai/sinapsis-image-transforms.git
cd sinapsis-image-transformsNote
If you'd like to enable external app sharing in Gradio, export GRADIO_SHARE_APP=True
🐳 Docker
IMPORTANT This docker image depends on the sinapsis-nvidia:base image. Please refer to the official sinapsis instructions to Build with Docker.
- Build the sinapsis-image-transforms image:
docker compose -f docker/compose.yaml build- Start the app container:
docker compose -f docker/compose_apps.yaml up sinapsis-image-transforms-gradio -d- Check the status:
docker logs -f sinapsis-image-transforms-inference-gradio- The logs will display the URL to access the webapp, e.g.:
NOTE: The url can be different, check the output of logs
Running on local URL: http://127.0.0.1:7860- To stop the app:
docker compose -f docker/compose_apps.yaml down💻 UV
To run the webapp using the uv package manager, please:
- Create the virtual environment and sync the dependencies:
uv sync --frozen- Install the wheel:
uv pip install sinapsis-image-transforms[webapp-gradio] --extra-index-url https://pypi.sinapsis.tech- Activate the environment:
source .venv/bin/activate- Run the webapp:
python webapps/gradio_image_transform_visualizer.py- The terminal will display the URL to access the webapp, e.g.:
NOTE: The url can be different, check the output of the terminal
Running on local URL: http://127.0.0.1:7860Documentation for this and other sinapsis packages is available on the sinapsis website
Tutorials for different projects within sinapsis are available at sinapsis tutorials page
This project is licensed under the AGPLv3 license, which encourages open collaboration and sharing. For more details, please refer to the LICENSE file.
For commercial use, please refer to our official Sinapsis website for information on obtaining a commercial license.