-
Preprocess Your Dataset
Go to the Reveal Preprocessing Repository
and follow the steps there to preprocess your dataset. -
Organize the Backend Dataset Structure
After completing preprocessing, navigate to your Reveal backend folder and create the following structure:
/back/
βββ dataset/
β βββ llm/
β β βββ processed/
β β β βββ 0.jpg
β β β βββ 1.jpg
β β β βββ ...
β β βββ thumbnails/
β β βββ 0.jpg
β β βββ 1.jpg
β β βββ ...
β βββ files/
β βββ unique_words_final.json
β βββ data_final.json
β βββ multi_clip_images_embedding.pt
β βββ multi_clip_words_embedding.pt
β βββ multi_clip_joint_embedding.ptβ Make sure:
- All
.jpgfiles are named using their numeric IDs (0.jpg,1.jpg, etc.). - The JSON and
.ptfiles come directly from the Reveal Preprocessing output.
Ensure you have the following installed:
- Node.js (v22.13.0 recommended)
- yarn (npm install -g yarn)
- Angular CLI (v14.1.0)
- Python (3.9+)
- conda (recommended for managing the backend environment)
# Navigate to the frontend folder
cd front
# Install dependencies with yarn (not npm)
yarn install
# Run the frontend
ng serveOnce it compiles successfully, open your browser and visit: π http://localhost:4200
# Open a new terminal
cd back
# Create and activate a conda environment
conda create -n reveal python=3.9 -y
conda activate reveal
# Install dependencies
pip install -r requirements.txt
# Run the backend server
python app.pyThe backend will start running.
Install it globally:
npm install -g @angular/cli@14.1.0Install Node using nvm:
nvm install 22.13.0
nvm use 22.13.0Double-check that your directory structure exactly matches the layout shown above and that filenames are consistent with the preprocessing output.