Skip to content

Commit

Permalink
glr
Browse files Browse the repository at this point in the history
  • Loading branch information
endymecy committed Jan 25, 2017
1 parent a6ae258 commit 0380ba9
Showing 1 changed file with 5 additions and 2 deletions.
7 changes: 5 additions & 2 deletions 分类和回归/线性模型/广义线性回归/glr.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,12 @@ $$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + … + \beta_{p-1} x_{p-1} + \epsilon

  这里$\beta$是未知参数,$\epsilon$是误差项。普通线性模型主要有以下几点假设:

- 因变量$Y$和误差项$\epsilon$均服从正太分布。其中$\epsilon \sim N(0,{{\sigma }^{2}})$,$Y\sim N({{\theta }^{T}}x,{{\sigma }^{2}})$。
- 因变量$Y$和误差项$\epsilon$均服从正太分布。其中$\epsilon \sim N(0,{{\sigma }^{2}})$,$Y\sim N({{\beta }^{T}}x,{{\sigma }^{2}})$。
- 预测量$x_i$和未知参数$\beta_i$均具有非随机性。预测量$x_i$具有非随机性、可测且不存在测量误差;未知参数$\beta_i$被认为是未知但不具随机性的常数。
- 普通线性模型的输出项是随机变量$Y$。普通线性模型主要研究响应变量的均值$E[Y]$。
- 联接方式:在上面三点假设下,对上式两边取数学期望,可得

$$E[Y]={\beta}_0+{\beta}_1x_1+{\beta}_2x_2+…+{\beta}_{p-1}x_{p-1}$$
$$E[Y] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + … + \beta_{p-1} x_{p-1}$$

  在普通线性模型里,响应变量的均值$E[Y]$与预测量的线性组合$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + … + \beta_{p-1} x_{p-1}$通过恒等式(`identity`)连接。
也可以说是通过$f(x)=x$这个连接函数连接。

0 comments on commit 0380ba9

Please sign in to comment.