-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
chore(deps): update dependency loft-sh/devpod to v0.5.7 #4805
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Auto-approved because label type/renovate is present.
🔍 Vulnerabilities of
|
digest | sha256:2c8251e95a903896d3a7b7d015c3908f8731e6fdf210eb8b63a18d674469c142 |
vulnerabilities | |
platform | linux/amd64 |
size | 16 MB |
packages | 124 |
github.com/moby/buildkit
|
Affected range | <0.12.5 |
Fixed version | 0.12.5 |
CVSS Score | 10 |
CVSS Vector | CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:H/A:H |
Description
Impact
A malicious BuildKit frontend or Dockerfile using
RUN --mount
could trick the feature that removes empty files created for the mountpoints into removing a file outside the container, from the host system.Patches
The issue has been fixed in v0.12.5
Workarounds
Avoid using BuildKit frontend from an untrusted source or building an untrusted Dockerfile containing
RUN --mount
feature.References
Affected range | <0.12.5 |
Fixed version | 0.12.5 |
CVSS Score | 9.8 |
CVSS Vector | CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H |
Description
Impact
In addition to running containers as build steps, BuildKit also provides APIs for running interactive containers based on built images. It was possible to use these APIs to ask BuildKit to run a container with elevated privileges. Normally, running such containers is only allowed if special
security.insecure
entitlement is enabled both by buildkitd configuration and allowed by the user initializing the build request.Patches
The issue has been fixed in v0.12.5 .
Workarounds
Avoid using BuildKit frontends from untrusted sources. A frontend image is usually specified as the
#syntax
line on your Dockerfile, or with--frontend
flag when usingbuildctl build
command.References
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
Affected range | <0.12.5 |
Fixed version | 0.12.5 |
CVSS Score | 8.7 |
CVSS Vector | CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:N |
Description
Impact
Two malicious build steps running in parallel sharing the same cache mounts with subpaths could cause a race condition that can lead to files from the host system being accessible to the build container.
Patches
The issue has been fixed in v0.12.5
Workarounds
Avoid using BuildKit frontend from an untrusted source or building an untrusted Dockerfile containing cache mounts with
--mount=type=cache,source=...
options.References
Improper Check for Unusual or Exceptional Conditions
Affected range | <0.12.5 |
Fixed version | 0.12.5 |
CVSS Score | 5.3 |
CVSS Vector | CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L |
Description
Impact
A malicious BuildKit client or frontend could craft a request that could lead to BuildKit daemon crashing with a panic.
Patches
The issue has been fixed in v0.12.5
Workarounds
Avoid using BuildKit frontends from untrusted sources. A frontend image is usually specified as the
#syntax
line on your Dockerfile, or with--frontend
flag when usingbuildctl build
command.References
google.golang.org/grpc 1.50.1
(golang)
pkg:golang/google.golang.org/grpc@1.50.1
Affected range | <1.56.3 |
Fixed version | 1.56.3 |
CVSS Score | 7.5 |
CVSS Vector | CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H |
Description
Impact
In affected releases of gRPC-Go, it is possible for an attacker to send HTTP/2 requests, cancel them, and send subsequent requests, which is valid by the HTTP/2 protocol, but would cause the gRPC-Go server to launch more concurrent method handlers than the configured maximum stream limit.
Patches
This vulnerability was addressed by #6703 and has been included in patch releases: 1.56.3, 1.57.1, 1.58.3. It is also included in the latest release, 1.59.0.
Along with applying the patch, users should also ensure they are using the
grpc.MaxConcurrentStreams
server option to apply a limit to the server's resources used for any single connection.Workarounds
None.
References
Uncontrolled Resource Consumption
Affected range | <1.56.3 |
Fixed version | 1.56.3 |
CVSS Score | 5.3 |
CVSS Vector | CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L |
Description
HTTP/2 Rapid reset attack
The HTTP/2 protocol allows clients to indicate to the server that a previous stream should be canceled by sending a RST_STREAM frame. The protocol does not require the client and server to coordinate the cancellation in any way, the client may do it unilaterally. The client may also assume that the cancellation will take effect immediately when the server receives the RST_STREAM frame, before any other data from that TCP connection is processed.
Abuse of this feature is called a Rapid Reset attack because it relies on the ability for an endpoint to send a RST_STREAM frame immediately after sending a request frame, which makes the other endpoint start working and then rapidly resets the request. The request is canceled, but leaves the HTTP/2 connection open.
The HTTP/2 Rapid Reset attack built on this capability is simple: The client opens a large number of streams at once as in the standard HTTP/2 attack, but rather than waiting for a response to each request stream from the server or proxy, the client cancels each request immediately.
The ability to reset streams immediately allows each connection to have an indefinite number of requests in flight. By explicitly canceling the requests, the attacker never exceeds the limit on the number of concurrent open streams. The number of in-flight requests is no longer dependent on the round-trip time (RTT), but only on the available network bandwidth.
In a typical HTTP/2 server implementation, the server will still have to do significant amounts of work for canceled requests, such as allocating new stream data structures, parsing the query and doing header decompression, and mapping the URL to a resource. For reverse proxy implementations, the request may be proxied to the backend server before the RST_STREAM frame is processed. The client on the other hand paid almost no costs for sending the requests. This creates an exploitable cost asymmetry between the server and the client.
Multiple software artifacts implementing HTTP/2 are affected. This advisory was originally ingested from the
swift-nio-http2
repo advisory and their original conent follows.swift-nio-http2 specific advisory
swift-nio-http2 is vulnerable to a denial-of-service vulnerability in which a malicious client can create and then reset a large number of HTTP/2 streams in a short period of time. This causes swift-nio-http2 to commit to a large amount of expensive work which it then throws away, including creating entirely new
Channel
s to serve the traffic. This can easily overwhelm anEventLoop
and prevent it from making forward progress.swift-nio-http2 1.28 contains a remediation for this issue that applies reset counter using a sliding window. This constrains the number of stream resets that may occur in a given window of time. Clients violating this limit will have their connections torn down. This allows clients to continue to cancel streams for legitimate reasons, while constraining malicious actors.
OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities
Affected range | <1.56.3 |
Fixed version | 1.56.3, 1.57.1, 1.58.3 |
Description
Impact
In affected releases of gRPC-Go, it is possible for an attacker to send HTTP/2 requests, cancel them, and send subsequent requests, which is valid by the HTTP/2 protocol, but would cause the gRPC-Go server to launch more concurrent method handlers than the configured maximum stream limit.
Patches
This vulnerability was addressed by #6703 and has been included in patch releases: 1.56.3, 1.57.1, 1.58.3. It is also included in the latest release, 1.59.0.
Along with applying the patch, users should also ensure they are using the
grpc.MaxConcurrentStreams
server option to apply a limit to the server's resources used for any single connection.Workarounds
None.
References
github.com/docker/distribution 2.8.1+incompatible
(golang)
pkg:golang/github.com/docker/distribution@2.8.1+incompatible
Undefined Behavior for Input to API
Affected range | <2.8.2-beta.1 |
Fixed version | 2.8.2-beta.1 |
CVSS Score | 7.5 |
CVSS Vector | CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H |
Description
Impact
Systems that run
distribution
built after a specific commit running on memory-restricted environments can suffer from denial of service by a crafted malicious/v2/_catalog
API endpoint request.Patches
Upgrade to at least 2.8.2-beta.1 if you are running
v2.8.x
release. If you use the code from the main branch, update at least to the commit after f55a6552b006a381d9167e328808565dd2bf77dc.Workarounds
There is no way to work around this issue without patching. Restrict access to the affected API endpoint: see the recommendations section.
References
/v2/_catalog
endpoint accepts a parameter to control the maximum amount of records returned (query string:n
).When not given the default
n=100
is used. The server trusts thatn
has an acceptable value, however when using a
maliciously large value, it allocates an array/slice ofn
of strings before filling the slice with data.This behaviour was introduced ~7yrs ago [1].
Recommendation
The
/v2/_catalog
endpoint was designed specifically to do registry syncs with search or other API systems. Such an endpoint would create a lot of load on the backend system, due to overfetch required to serve a request in certain implementations.Because of this, we strongly recommend keeping this API endpoint behind heightened privilege and avoiding leaving it exposed to the internet.
For more information
If you have any questions or comments about this advisory:
- Open an issue in distribution repository
- Email us at cncf-distribution-security@lists.cncf.io
[1] faulty commit
go.opentelemetry.io/contrib/instrumentation/google.golang.org/grpc/otelgrpc 0.29.0
(golang)
pkg:golang/go.opentelemetry.io/contrib/instrumentation/google.golang.org/grpc/otelgrpc@0.29.0
Allocation of Resources Without Limits or Throttling
Affected range | <0.46.0 |
Fixed version | 0.46.0 |
CVSS Score | 7.5 |
CVSS Vector | CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H |
Description
Summary
The grpc Unary Server Interceptor opentelemetry-go-contrib/instrumentation/google.golang.org/grpc/otelgrpc/interceptor.go
// UnaryServerInterceptor returns a grpc.UnaryServerInterceptor suitable // for use in a grpc.NewServer call. func UnaryServerInterceptor(opts ...Option) grpc.UnaryServerInterceptor {
out of the box adds labels
net.peer.sock.addr
net.peer.sock.port
that have unbound cardinality. It leads to the server's potential memory exhaustion when many malicious requests are sent.
Details
An attacker can easily flood the peer address and port for requests.
PoC
Apply the attached patch to the example and run the client multiple times. Observe how each request will create a unique histogram and how the memory consumption increases during it.
Impact
In order to be affected, the program has to configure a metrics pipeline, use UnaryServerInterceptor, and does not filter any client IP address and ports via middleware or proxies, etc.
Others
It is similar to already reported vulnerabilities.
- GHSA-5r5m-65gx-7vrh (open-telemetry/opentelemetry-go-contrib)
- GHSA-cg3q-j54f-5p7p (prometheus/client_golang)
Workaround for affected versions
As a workaround to stop being affected, a view removing the attributes can be used.
The other possibility is to disable grpc metrics instrumentation by passing
otelgrpc.WithMeterProvider
option withnoop.NewMeterProvider
.Solution provided by upgrading
In PR #4322, to be released with v0.46.0, the attributes were removed.
References
github.com/docker/docker 24.0.5+incompatible
(golang)
pkg:golang/github.com/docker/docker@24.0.5+incompatible
Insufficient Verification of Data Authenticity
Affected range | <24.0.9 |
Fixed version | 24.0.9 |
CVSS Score | 6.9 |
CVSS Vector | CVSS:3.1/AV:L/AC:H/PR:N/UI:R/S:C/C:L/I:H/A:L |
Description
The classic builder cache system is prone to cache poisoning if the image is built
FROM scratch
.
Also, changes to some instructions (most important beingHEALTHCHECK
andONBUILD
) would not cause a cache miss.An attacker with the knowledge of the Dockerfile someone is using could poison their cache by making them pull a specially crafted image that would be considered as a valid cache candidate for some build steps.
For example, an attacker could create an image that is considered as a valid cache candidate for:
FROM scratch MAINTAINER Pawel
when in fact the malicious image used as a cache would be an image built from a different Dockerfile.
In the second case, the attacker could for example substitute a different
HEALTCHECK
command.Impact
23.0+ users are only affected if they explicitly opted out of Buildkit (
DOCKER_BUILDKIT=0
environment variable) or are using the/build
API endpoint (which uses the classic builder by default).All users on versions older than 23.0 could be impacted. An example could be a CI with a shared cache, or just a regular Docker user pulling a malicious image due to misspelling/typosquatting.
Image build API endpoint (
/build
) andImageBuild
function fromgithub.com/docker/docker/client
is also affected as it the uses classic builder by default.Patches
Patches are included in Moby releases:
- v25.0.2
- v24.0.9
Workarounds
- Use
--no-cache
or use Buildkit if possible (DOCKER_BUILDKIT=1
, it's default on 23.0+ assuming that the buildx plugin is installed).- Use
Version = types.BuilderBuildKit
orNoCache = true
inImageBuildOptions
forImageBuild
call.
Affected range | >=24.0.0 |
Fixed version | 24.0.7 |
Description
Intel's RAPL (Running Average Power Limit) feature, introduced by the Sandy Bridge microarchitecture, provides software insights into hardware energy consumption. To facilitate this, Intel introduced the powercap framework in Linux kernel 3.13, which reads values via relevant MSRs (model specific registers) and provides unprivileged userspace access via
sysfs
. As RAPL is an interface to access a hardware feature, it is only available when running on bare metal with the module compiled into the kernel.By 2019, it was realized that in some cases unprivileged access to RAPL readings could be exploited as a power-based side-channel against security features including AES-NI (potentially inside a SGX enclave) and KASLR (kernel address space layout randomization). Also known as the PLATYPUS attack, Intel assigned CVE-2020-8694 and CVE-2020-8695, and AMD assigned CVE-2020-12912.
Several mitigations were applied; Intel reduced the sampling resolution via a microcode update, and the Linux kernel prevents access by non-root users since 5.10. However, this kernel-based mitigation does not apply to many container-based scenarios:
- Unless using user namespaces, root inside a container has the same level of privilege as root outside the container, but with a slightly more narrow view of the system
sysfs
is mounted inside containers read-only; however only read access is needed to carry out this attack on an unpatched CPUWhile this is not a direct vulnerability in container runtimes, defense in depth and safe defaults are valuable and preferred, especially as this poses a risk to multi-tenant container environments running directly on affected hardware. This is provided by masking
/sys/devices/virtual/powercap
in the default mount configuration, and adding an additional set of rules to deny it in the default AppArmor profile.While
sysfs
is not the only way to read from the RAPL subsystem, other ways of accessing it require additional capabilities such asCAP_SYS_RAWIO
which is not available to containers by default, orperf
paranoia level less than 1, which is a non-default kernel tunable.References
- https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8694
- https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8695
- https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12912
- https://platypusattack.com/
- https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=949dd0104c496fa7c14991a23c03c62e44637e71
- https://web.eece.maine.edu/~vweaver/projects/rapl/
OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities
Affected range | >=24.0.0 |
Fixed version | v24.0.7 |
Description
Intel's RAPL (Running Average Power Limit) feature, introduced by the Sandy Bridge microarchitecture, provides software insights into hardware energy consumption. To facilitate this, Intel introduced the powercap framework in Linux kernel 3.13, which reads values via relevant MSRs (model specific registers) and provides unprivileged userspace access via
sysfs
.
github.com/containerd/containerd 1.6.20
(golang)
pkg:golang/github.com/containerd/containerd@1.6.20
Affected range | <=1.6.25 |
Fixed version | 1.6.26 |
Description
/sys/devices/virtual/powercap accessible by default to containers
Intel's RAPL (Running Average Power Limit) feature, introduced by the Sandy Bridge microarchitecture, provides software insights into hardware energy consumption. To facilitate this, Intel introduced the powercap framework in Linux kernel 3.13, which reads values via relevant MSRs (model specific registers) and provides unprivileged userspace access via
sysfs
. As RAPL is an interface to access a hardware feature, it is only available when running on bare metal with the module compiled into the kernel.By 2019, it was realized that in some cases unprivileged access to RAPL readings could be exploited as a power-based side-channel against security features including AES-NI (potentially inside a SGX enclave) and KASLR (kernel address space layout randomization). Also known as the PLATYPUS attack, Intel assigned CVE-2020-8694 and CVE-2020-8695, and AMD assigned CVE-2020-12912.
Several mitigations were applied; Intel reduced the sampling resolution via a microcode update, and the Linux kernel prevents access by non-root users since 5.10. However, this kernel-based mitigation does not apply to many container-based scenarios:
- Unless using user namespaces, root inside a container has the same level of privilege as root outside the container, but with a slightly more narrow view of the system
sysfs
is mounted inside containers read-only; however only read access is needed to carry out this attack on an unpatched CPUWhile this is not a direct vulnerability in container runtimes, defense in depth and safe defaults are valuable and preferred, especially as this poses a risk to multi-tenant container environments. This is provided by masking
/sys/devices/virtual/powercap
in the default mount configuration, and adding an additional set of rules to deny it in the default AppArmor profile.While
sysfs
is not the only way to read from the RAPL subsystem, other ways of accessing it require additional capabilities such asCAP_SYS_RAWIO
which is not available to containers by default, orperf
paranoia level less than 1, which is a non-default kernel tunable.References
- https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8694
- https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8695
- https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12912
- https://platypusattack.com/
- https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=949dd0104c496fa7c14991a23c03c62e44637e71
- https://web.eece.maine.edu/~vweaver/projects/rapl/
OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities
Affected range | <=1.6.25 |
Fixed version | 1.6.26, 1.7.11 |
Description
/sys/devices/virtual/powercap accessible by default to containers
Intel's RAPL (Running Average Power Limit) feature, introduced by the Sandy Bridge microarchitecture, provides software insights into hardware energy consumption. To facilitate this, Intel introduced the powercap framework in Linux kernel 3.13, which reads values via relevant MSRs (model specific registers) and provides unprivileged userspace access via
sysfs
. As RAPL is an interface to access a hardware feature, it is only available when running on bare metal with the module compiled into the kernel.By 2019, it was realized that in some cases unprivileged access to RAPL readings could be exploited as a power-based side-channel against security features including AES-NI (potentially inside a SGX enclave) and KASLR (kernel address space layout randomization). Also known as the PLATYPUS attack, Intel assigned CVE-2020-8694 and CVE-2020-8695, and AMD assigned CVE-2020-12912.
Several mitigations were applied; Intel reduced the sampling resolution via a microcode update, and the Linux kernel prevents access by non-root users since 5.10. However, this kernel-based mitigation does not apply to many container-based scenarios:
- Unless using user namespaces, root inside a container has the same level of privilege as root outside the container, but with a slightly more narrow view of the system
sysfs
is mounted inside containers read-only; however only read access is needed to carry out this attack on an unpatched CPUWhile this is not a direct vulnerability in container runtimes, defense in depth and safe defaults are valuable and preferred, especially as this poses a risk to multi-tenant container environments. This is provided by masking
/sys/devices/virtual/powercap
in the default mount configuration, and adding an additional set of rules to deny it in the default AppArmor profile.While
sysfs
is not the only way to read from the RAPL subsystem, other ways of accessing it require additional capabilities such asCAP_SYS_RAWIO
which is not available to containers by default, orperf
paranoia level less than 1, which is a non-default kernel tunable.References
- https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8694
- https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8695
- https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12912
- https://platypusattack.com/
- https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=949dd0104c496fa7c14991a23c03c62e44637e71
- https://web.eece.maine.edu/~vweaver/projects/rapl/
golang.org/x/net 0.20.0
(golang)
pkg:golang/golang.org/x/net@0.20.0
Uncontrolled Resource Consumption
Affected range | <0.23.0 |
Fixed version | 0.23.0 |
CVSS Score | 5.3 |
CVSS Vector | CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L |
Description
An attacker may cause an HTTP/2 endpoint to read arbitrary amounts of header data by sending an excessive number of CONTINUATION frames. Maintaining HPACK state requires parsing and processing all HEADERS and CONTINUATION frames on a connection. When a request's headers exceed MaxHeaderBytes, no memory is allocated to store the excess headers, but they are still parsed. This permits an attacker to cause an HTTP/2 endpoint to read arbitrary amounts of header data, all associated with a request which is going to be rejected. These headers can include Huffman-encoded data which is significantly more expensive for the receiver to decode than for an attacker to send. The fix sets a limit on the amount of excess header frames we will process before closing a connection.
google.golang.org/protobuf 1.30.0
(golang)
pkg:golang/google.golang.org/protobuf@1.30.0
Loop with Unreachable Exit Condition ('Infinite Loop')
Affected range | <1.33.0 |
Fixed version | 1.33.0 |
Description
The protojson.Unmarshal function can enter an infinite loop when unmarshaling certain forms of invalid JSON. This condition can occur when unmarshaling into a message which contains a google.protobuf.Any value, or when the UnmarshalOptions.DiscardUnknown option is set.
stdlib 1.21.8
(golang)
Affected range | <1.21.9 |
Fixed version | 1.21.9 |
Description
An attacker may cause an HTTP/2 endpoint to read arbitrary amounts of header data by sending an excessive number of CONTINUATION frames.
Maintaining HPACK state requires parsing and processing all HEADERS and CONTINUATION frames on a connection. When a request's headers exceed MaxHeaderBytes, no memory is allocated to store the excess headers, but they are still parsed.
This permits an attacker to cause an HTTP/2 endpoint to read arbitrary amounts of header data, all associated with a request which is going to be rejected. These headers can include Huffman-encoded data which is significantly more expensive for the receiver to decode than for an attacker to send.
The fix sets a limit on the amount of excess header frames we will process before closing a connection.
Attempting automerge. See https://github.com/uniget-org/tools/actions/runs/9131386582. |
PR is clean and can be merged. See https://github.com/uniget-org/tools/actions/runs/9131386582. |
This PR contains the following updates:
0.5.6
->0.5.7
Warning
Some dependencies could not be looked up. Check the Dependency Dashboard for more information.
Release Notes
loft-sh/devpod (loft-sh/devpod)
v0.5.7
Compare Source
What's Changed
This release focuses on stability and DevPod Pro improvements. Check out loft-sh/devpod@v0.5.6...v0.5.7 for the full changelog.
Configuration
📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).
🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.
♻ Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.
🔕 Ignore: Close this PR and you won't be reminded about this update again.
This PR has been generated by Renovate Bot.