Authors: Umang Garg
This directory contains implementations of GAIN framework for imputation using advanced datasets like UCI Adult, COMPAS.
To run the pipeline for training and evaluation on GAIN framwork, simply run python -m main.py.
Note that any model architecture can be used as the generator and discriminator model such as multi-layer perceptrons or CNNs.
- data_name: letter, spam or adult
- miss_rate: probability of missing components
- batch:size: batch size
- hint_rate: hint rate
- alpha: hyperparameter
- iterations: iterations
- deep_analysis: True or False for Model validity
- imputer type: select imputer
- drop_f: option to drop features
- runs: number of runs
python main.py --data_name adult --miss_rate 0.1 --batch_size 128 --hint_rate 1 --alpha 10 --iterations 1000 --drop_f 0 1 5 10 13 --deep_analysis True --runs 10
- imputed_data_x_lst: imputed data list
- rmse_lst: Root Mean Squared Error list