Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Suppress jit trace warning + graph once #3454

Merged
merged 2 commits into from
Jun 4, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 7 additions & 5 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import os
import random
import time
import warnings
from copy import deepcopy
from pathlib import Path
from threading import Thread
Expand Down Expand Up @@ -323,18 +324,19 @@ def train(hyp, opt, device, tb_writer=None):
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 6) % (
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])
pbar.set_description(s)

# Plot
if plots and ni < 3:
f = save_dir / f'train_batch{ni}.jpg' # filename
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
if tb_writer:
tb_writer.add_graph(torch.jit.trace(de_parallel(model), imgs, strict=False), []) # model graph
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
if tb_writer and ni == 0:
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress jit trace warning
tb_writer.add_graph(torch.jit.trace(de_parallel(model), imgs, strict=False), []) # graph
elif plots and ni == 10 and wandb_logger.wandb:
wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
wandb_logger.log({'Mosaics': [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
save_dir.glob('train*.jpg') if x.exists()]})

# end batch ------------------------------------------------------------------------------------------------
Expand Down