Closed
Description
Search before asking
- I have searched the YOLOv5 issues and discussions and found no similar questions.
Question
Hello, i am trying to store/save the true positive (correct) detected bounding boxes of the yolov5 model. In order to do that, i am trying to modify the val.py code in the following lines:
# Evaluate
if nl:
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
correct = process_batch(predn, labelsn, iouv)
if plots:
confusion_matrix.process_batch(predn, labelsn)
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
Modyfying them in this way:
# Evaluate
if nl:
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
correct = process_batch(predn, labelsn, iouv)
for batch_j in correct[batch_j, 0]:
init_img = cv2.imread(paths[batch_j])
crop_img = init_img[int(predn[batch_j,0]):int(predn[batch_j,2]),int(predn[batch_j,1]):int(predn[batch_j,3]),:]
if plots:
confusion_matrix.process_batch(predn, labelsn)
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
And now i want to store this crop_img which corresponds to the true positive detections. Is that possible? Has anybody done it with another way? Thank you mery much
Additional
No response