Skip to content

ujuo/yolo2-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv2-tiny in PyTorch

  1. Install gpu driver (ubuntu 20.04)
  • NVIDIA-Linux-x86_64-460.80.run (gcc 9.x)
  • cuda_9.0.176_384.81_linux.run (gcc 6.x)
  • cudnn-9.0-linux-x64-v7.6.5.32.tgz
  1. Install gcc 6
echo "deb http://archive.ubuntu.com/ubuntu bionic main universe" >> /etc/apt/sources.list
sudo apt update
sudo apt install g++-6
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-6 3
  1. Install anaconda & create conda environment
conda create -n yolo2-tiny python=3.6 pip
conda activate yolo2-tiny
pip install -r requirement
  1. Build project files
./make.sh
  1. Run
python demo.py
python train.py
python test.py

Make the training, validation, test data

mkdir -p data/images/0
mkdir -p data/imagesets/0
mkdir -p data/xml/0
nano data/labels.txt
nano data/imagesets/0/test.txt
nano data/imagesets/0/trainval.txt
  1. copy your images to data/images/0
  2. copy your xml files to data/xml/0
  3. edit labels.txt , test.txt, trainval.txt

YOLOv2 in PyTorch

NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0).

This is a PyTorch implementation of YOLOv2. This project is mainly based on darkflow and darknet.

I used a Cython extension for postprocessing and multiprocessing.Pool for image preprocessing. Testing an image in VOC2007 costs about 13~20ms.

For details about YOLO and YOLOv2 please refer to their project page and the paper: YOLO9000: Better, Faster, Stronger by Joseph Redmon and Ali Farhadi.

NOTE 1: This is still an experimental project. VOC07 test mAP is about 0.71 (trained on VOC07+12 trainval, reported by @cory8249). See issue1 and issue23 for more details about training.

NOTE 2: I recommend to write your own dataloader using torch.utils.data.Dataset since multiprocessing.Pool.imap won't stop even there is no enough memory space. An example of dataloader for VOCDataset: issue71.

NOTE 3: Upgrade to PyTorch 0.4: longcw#59

Installation and demo

  1. Clone this repository

    git clone git@github.com:longcw/yolo2-pytorch.git
  2. Build the reorg layer (tf.extract_image_patches)

    cd yolo2-pytorch
    ./make.sh
  3. Download the trained model yolo-voc.weights.h5 (link updated) and set the model path in demo.py

  4. Run demo python demo.py.

Training YOLOv2

You can train YOLO2 on any dataset. Here we train it on VOC2007/2012.

  1. Download the training, validation, test data and VOCdevkit

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
  2. Extract all of these tars into one directory named VOCdevkit

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
    tar xvf VOCdevkit_08-Jun-2007.tar
  3. It should have this basic structure

    $VOCdevkit/                           # development kit
    $VOCdevkit/VOCcode/                   # VOC utility code
    $VOCdevkit/VOC2007                    # image sets, annotations, etc.
    # ... and several other directories ...
  4. Since the program loading the data in yolo2-pytorch/data by default, you can set the data path as following.

    cd yolo2-pytorch
    mkdir data
    cd data
    ln -s $VOCdevkit VOCdevkit2007
  5. Download the pretrained darknet19 model (link updated) and set the path in yolo2-pytorch/cfgs/exps/darknet19_exp1.py.

  6. (optional) Training with TensorBoard.

    To use the TensorBoard, set use_tensorboard = True in yolo2-pytorch/cfgs/config.py and install TensorboardX (https://github.com/lanpa/tensorboard-pytorch). Tensorboard log will be saved in training/runs.

  7. Run the training program: python train.py.

Evaluation

Set the path of the trained_model in yolo2-pytorch/cfgs/config.py.

cd faster_rcnn_pytorch
mkdir output
python test.py

Training on your own data

The forward pass requires that you supply 4 arguments to the network:

  • im_data - image data.
    • This should be in the format C x H x W, where C corresponds to the color channels of the image and H and W are the height and width respectively.
    • Color channels should be in RGB format.
    • Use the imcv2_recolor function provided in utils/im_transform.py to preprocess your image. Also, make sure that images have been resized to 416 x 416 pixels
  • gt_boxes - A list of numpy arrays, where each one is of size N x 4, where N is the number of features in the image. The four values in each row should correspond to x_bottom_left, y_bottom_left, x_top_right, and y_top_right.
  • gt_classes - A list of numpy arrays, where each array contains an integer value corresponding to the class of each bounding box provided in gt_boxes
  • dontcare - a list of lists

License: MIT license (MIT)

About

YOLOv2 in PyTorch

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 71.2%
  • Cython 12.0%
  • C 9.4%
  • Cuda 7.1%
  • Other 0.3%