Description
Hello,
I’m trying to run the inference experiment for the UBFC-rPPG dataset using the unsupervised methods exactly as described in the README tutorial. In my UBFC-rPPG_UNSUPERVISED.yaml file, I updated DATA_PATH and CACHED_PATH to point to my local directories and set DO_PREPROCESS: True.
When I execute:
python main.py --config_file ./configs/infer_configs/UBFC_UNSUPERVISED.yaml
I immediately get the following error:
Traceback (most recent call last): File "main.py", line 11, in <module> from neural_methods import trainer File "/Data1/jhseo/rppg-toolbox/rPPG-Toolbox/neural_methods/trainer/__init__.py", line 2, in <module> import neural_methods.trainer.PhysnetTrainer File "/Data1/jhseo/rppg-toolbox/rPPG-Toolbox/neural_methods/trainer/PhysnetTrainer.py", line 9, in <module> from neural_methods.loss.PhysNetNegPearsonLoss import Neg_Pearson File "/Data1/jhseo/rppg-toolbox/rPPG-Toolbox/neural_methods/loss/PhysNetNegPearsonLoss.py", line 9, in <module> from torchvision import transforms File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/torchvision/__init__.py", line 6, in <module> from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/torchvision/models/__init__.py", line 2, in <module> from .convnext import * File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/torchvision/models/convnext.py", line 8, in <module> from ..ops.misc import Conv2dNormActivation, Permute File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/torchvision/ops/__init__.py", line 1, in <module> from ._register_onnx_ops import _register_custom_op File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/torchvision/ops/_register_onnx_ops.py", line 5, in <module> from torch.onnx import symbolic_opset11 as opset11 File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/torch/onnx/__init__.py", line 46, in <module> from ._internal.exporter import ( # usort:skip. needs to be last to avoid circular import File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/torch/onnx/_internal/exporter.py", line 42, in <module> from torch.onnx._internal.fx import ( File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/torch/onnx/_internal/fx/__init__.py", line 1, in <module> from .patcher import ONNXTorchPatcher File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/torch/onnx/_internal/fx/patcher.py", line 11, in <module> import transformers # type: ignore[import] File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/transformers-4.51.3-py3.8.egg/transformers/__init__.py", line 26, in <module> from . import dependency_versions_check File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/transformers-4.51.3-py3.8.egg/transformers/dependency_versions_check.py", line 16, in <module> from .utils.versions import require_version, require_version_core File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/transformers-4.51.3-py3.8.egg/transformers/utils/__init__.py", line 24, in <module> from .backbone_utils import BackboneConfigMixin, BackboneMixin File "/Data1/jhseo/rppg-toolbox/lib/python3.8/site-packages/transformers-4.51.3-py3.8.egg/transformers/utils/backbone_utils.py", line 33, in <module> out_features: Optional[Iterable[str]], out_indices: Optional[Iterable[int]], stage_names: Optional[Iterable[str]] TypeError: 'ABCMeta' object is not subscriptable
Could you let me know how to resolve this TypeError: 'ABCMeta' object is not subscriptable?
I’ve attached my full config below for reference:
BASE: [''] TOOLBOX_MODE: "unsupervised_method" UNSUPERVISED: METHOD: ["ICA", "POS", "CHROM", "GREEN", "LGI", "PBV", "OMIT"] METRICS: ['MAE', 'RMSE', 'MAPE', 'Pearson', 'SNR', 'BA'] DATA: FS: 30 DATASET: UBFC-rPPG DO_PREPROCESS: True DATA_FORMAT: NDHWC DATA_PATH: "/Data1/jhseo/rppg-toolbox/rPPG-Toolbox/data/UBFC-rPPG" CACHED_PATH: "/Data1/jhseo/rppg-toolbox/rPPG-Toolbox/PreprocessedData" EXP_DATA_NAME: "" BEGIN: 0.0 END: 1.0 PREPROCESS: DATA_TYPE: ['Raw'] DATA_AUG: ['None'] LABEL_TYPE: Raw DO_CHUNK: False CHUNK_LENGTH: 180 CROP_FACE: DO_CROP_FACE: True BACKEND: 'HC' USE_LARGE_FACE_BOX: True LARGE_BOX_COEF: 1.5 DETECTION: DO_DYNAMIC_DETECTION: False DYNAMIC_DETECTION_FREQUENCY: 30 USE_MEDIAN_FACE_BOX: False RESIZE: H: 72 W: 72 INFERENCE: EVALUATION_METHOD: "FFT" EVALUATION_WINDOW: USE_SMALLER_WINDOW: False WINDOW_SIZE: 10
Thanks for your great work :)