Skip to content

Agent Context Pruning (ACP) - Intelligent context management for AI coding agents

License

Notifications You must be signed in to change notification settings

tuanhung303/opencode-agent-context-pruning

Repository files navigation

Agentic Context Pruning (ACP)

npm version CI License: MIT

Agent Context Pruning

Your AI agent wastes half its tokens re-reading old tool outputs, stale file contents, and duplicate results. ACP fixes that — it's a zero-config OpenCode plugin that automatically prunes obsolete context so your agent stays fast, cheap, and focused.


Before / After

 WITHOUT ACP                          WITH ACP
┌──────────────────────────┐        ┌──────────────────────────┐
│ read(config.ts)    3k tk │        │                          │
│ edit(config.ts)    2k tk │        │                          │
│ read(config.ts)    3k tk │  ───►  │ read(config.ts)    3k tk │ ← latest only
│ git status         1k tk │        │ git status         1k tk │ ← latest only
│ git status         1k tk │        │                          │
│ glob(**/*.ts)      4k tk │        │ glob(**/*.ts)      4k tk │
├──────────────────────────┤        ├──────────────────────────┤
│ Total: ~14k tokens       │        │ Total: ~8k tokens  -43%  │
└──────────────────────────┘        └──────────────────────────┘
Workload Without ACP With ACP Savings
Typical Session ~80k tokens ~40k tokens 50%
Long Session ~150k tokens ~75k tokens 50%
File-Heavy Work ~100k tokens ~35k tokens 65%

Quick Start

Add to your OpenCode config:

// opencode.jsonc
{
    "plugin": ["@tuanhung303/opencode-acp@latest"],
}

That's it. ACP works out of the box — no configuration needed.


What It Does

  • 🔁 Auto-deduplicates — re-reads of the same file, duplicate git status, repeated URL fetches are automatically superseded (details)
  • 📁 One-file-one-view — only the latest read/write/edit of each file stays in context
  • 🧹 Manual pruning — agents can discard, distill, or replace any context block by hash (API reference)
  • 🔖 Todo reminders — nudges agents when tasks are forgotten or stuck
  • 🧠 Thinking mode safe — fully compatible with Anthropic, DeepSeek, and Kimi extended thinking APIs (details)
  • Zero-config — works immediately, with optional presets for fine-tuning

Configuration

ACP works with zero config. For fine-tuning, use presets:

// .opencode/acp.jsonc
{
    "strategies": {
        "aggressivePruning": {
            "preset": "balanced", // "compact" | "balanced" | "verbose"
        },
    },
}
Preset Description Best For
compact Maximum cleanup, all options enabled Long sessions, token-constrained
balanced Good defaults, preserves user code Most use cases (default)
verbose Minimal cleanup, preserves all Debugging, audit trails

Full configuration reference


Documentation

Document Description
Configuration Full config reference, all flags, protected tools
API Reference context_prune tool interface, batch ops, pattern replace
Auto-Supersede All 8 automatic deduplication strategies
Troubleshooting Common errors and fixes
Architecture Plugin internals and message flow
Validation Guide 43 test scenarios
Changelog Version history

Provider Compatibility

Provider Thinking Mode Compatible Notes
Anthropic Extended thinking Strict validation
DeepSeek DeepThink Similar to Anthropic
Kimi K1 thinking Similar to Anthropic
OpenAI No thinking mode
Google No thinking mode

Contributing

  1. Fork → 2. Branch → 3. npm test → 4. PR

CI/CD: PRs run lint + type check + tests automatically. Merges to main auto-publish to npm.

License

MIT © tuanhung303


⚠️ Known Pitfalls for Agents — Critical rules when modifying ACP code

Read this section before modifying ACP code. These are hard-won lessons from debugging production issues.

1. Always Fetch Messages in All Code Paths

❌ WRONG:

async function executeContextToolDiscard(ctx, toolCtx, hashes) {
    const { state, logger } = ctx

    // Validate hashes...

    if (validHashes.length === 0) {
        // Early return without fetching messages
        const currentParams = getCurrentParams(state, [], logger)  // ← BUG: Empty array
        return "No valid hashes"
    }

    // Only fetch messages in success path
    const messages = await client.session.messages(...)
}

✅ CORRECT:

async function executeContextToolDiscard(ctx, toolCtx, hashes) {
    const { client, state, logger } = ctx

    // ALWAYS fetch messages first - required for thinking mode API compatibility
    const messagesResponse = await client.session.messages({
        path: { id: toolCtx.sessionID },
    })
    const messages = messagesResponse.data || messagesResponse

    // ALWAYS initialize session - syncs reasoning_content
    await ensureSessionInitialized(client, state, toolCtx.sessionID, logger, messages)

    // Now validate hashes...

    if (validHashes.length === 0) {
        const currentParams = getCurrentParams(state, messages, logger) // ← Use actual messages
        return "No valid hashes"
    }
}

Why? Anthropic's thinking mode API requires reasoning_content on all assistant messages with tool calls. Skipping ensureSessionInitialized causes 400 errors.


2. Never Skip ensureSessionInitialized

This function syncs reasoning_content from message parts to msg.info. Without it:

error, status code: 400, message: thinking is enabled but reasoning_content is missing
in assistant tool call message at index 2

Rule: Call ensureSessionInitialized at the START of every context_prune tool function, before any early returns.


3. Thinking Mode: Distill, Don't Discard Reasoning

❌ WRONG:

// Completely removing reasoning_content breaks API
state.prune.reasoningPartIds.push(partId)
// No replacement content → field removed → API error

✅ CORRECT:

// Convert discard to distill with minimal placeholder
if (reasoningHashes.length > 0) {
    const minimalSummaries = reasoningHashes.map(() => "—")
    await executeContextReasoningDistill(
        ctx,
        toolCtx,
        reasoningHashes.map((h, i) => [h, minimalSummaries[i]]),
    )
}

Why? The reasoning_content field must exist (even if minimal) for thinking mode providers.


4. Test with Non-Existing Hashes

Always test context_prune tool changes with:

  1. Valid existing hashes (success path)
  2. Non-existing hashes like "zzzzzz" (no-op path)
  3. Mix of valid and invalid hashes

The no-op path is where most bugs hide because it's less tested.


5. Provider-Specific Behavior

Provider Thinking Mode reasoning_content Required Notes
Anthropic Extended thinking ✅ Yes Strict validation
DeepSeek DeepThink ✅ Yes Similar to Anthropic
Kimi K1 thinking ✅ Yes Similar to Anthropic
OpenAI N/A ❌ No No thinking mode
Google N/A ❌ No No thinking mode

Always test with Anthropic when modifying context/pruning logic—it has the strictest API validation.


6. The Transform Hook Timing

User Message → Transform Hook → ensureReasoningContentSync → API Call
                    ↑
            Context tool runs HERE

If context_prune tool returns early (no-op), the transform hook may not have synced reasoning_content yet. That's why each tool function must call ensureSessionInitialized itself.


7. Debug Checklist

When you see reasoning_content is missing errors:

  1. Check the error index - "at index 2" means the 3rd message in the array
  2. Verify message fetch - Is the function fetching messages before early returns?
  3. Verify session init - Is ensureSessionInitialized called in ALL code paths?
  4. Check the no-op path - Does the early return path have proper initialization?
  5. Test with invalid hash - context_prune({ action: "discard", targets: [["zzzzzz"]] })

🗨️ For LLM Agents — Quick pruning reference and safety guidelines

If you're an AI assistant reading this:

Quick Pruning Reference:

  • Light pressure (<50%): No action
  • Moderate (50-75%): Prune old tool outputs using context_prune({ action: "discard", targets: [[hash]] })
  • High (75-90%): Anchor critical info, then batch prune non-essential items
  • Critical (>90%): Aggressively discard all disposable context

Always Protect: Active todos, current file edits, user requirements

Ask the user: "Would you like me to run a context optimization check?"

About

Agent Context Pruning (ACP) - Intelligent context management for AI coding agents

Resources

License

Stars

Watchers

Forks

Sponsor this project

Packages

No packages published

Contributors 2

  •  
  •  

Languages