Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add test to check the output memory type for onnx models #6033

Merged
merged 3 commits into from
Jul 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 82 additions & 3 deletions qa/L0_warmup/test.sh
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#!/bin/bash
# Copyright 2019-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright 2019-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
Expand Down Expand Up @@ -42,6 +42,9 @@ export CUDA_VISIBLE_DEVICES=0

CLIENT=../clients/image_client
CLIENT_LOG="./client.log"
CLIENT_PY=./python_unittest.py
EXPECTED_NUM_TESTS="1"
TEST_RESULT_FILE='test_results.txt'

IMAGE="../images/vulture.jpeg"

Expand All @@ -56,6 +59,7 @@ SERVER_LOG="./inference_server.log"
source ../common/util.sh

RET=0
rm -fr *.txt

for BACKEND in ${BACKENDS}; do
rm -f $SERVER_LOG $CLIENT_LOG
Expand Down Expand Up @@ -408,8 +412,83 @@ set -e
kill $SERVER_PID
wait $SERVER_PID

if [ $RET -eq 0 ]; then
echo -e "\n***\n*** Test Passed\n***"
# Test the onnx model to verify that the memory type of the output tensor
# remains unchanged with the warmup setting
pip3 uninstall -y torch
pip3 install torch==1.13.0+cu117 -f https://download.pytorch.org/whl/torch_stable.html

rm -fr models && mkdir models
cp -r /data/inferenceserver/${REPO_VERSION}/qa_model_repository/onnx_nobatch_float32_float32_float32 models/.
(cd models/onnx_nobatch_float32_float32_float32 && \
echo "" >> config.pbtxt && \
echo 'instance_group [{' >> config.pbtxt && \
echo ' kind : KIND_GPU' >> config.pbtxt && \
echo '}]' >> config.pbtxt && \
echo 'model_warmup [{' >> config.pbtxt && \
echo ' name : "sample"' >> config.pbtxt && \
echo ' batch_size: 1' >> config.pbtxt && \
echo ' inputs {' >> config.pbtxt && \
echo ' key: "INPUT0"' >> config.pbtxt && \
echo ' value: {' >> config.pbtxt && \
echo ' data_type: TYPE_FP32' >> config.pbtxt && \
echo " dims: 16" >> config.pbtxt && \
echo " zero_data: false" >> config.pbtxt && \
echo ' }' >> config.pbtxt && \
echo ' }' >> config.pbtxt && \
echo ' inputs {' >> config.pbtxt && \
echo ' key: "INPUT1"' >> config.pbtxt && \
echo ' value: {' >> config.pbtxt && \
echo ' data_type: TYPE_FP32' >> config.pbtxt && \
echo " dims: 16" >> config.pbtxt && \
echo " zero_data: false" >> config.pbtxt && \
echo ' }' >> config.pbtxt && \
echo ' }' >> config.pbtxt && \
echo '}]' >> config.pbtxt )

mkdir -p models/bls_onnx_warmup/1/
cp ../python_models/bls_onnx_warmup/model.py models/bls_onnx_warmup/1/
cp ../python_models/bls_onnx_warmup/config.pbtxt models/bls_onnx_warmup/.

cp ../L0_backend_python/python_unittest.py .
sed -i 's#sys.path.append("../../common")#sys.path.append("../common")#g' python_unittest.py

run_server
if [ "$SERVER_PID" == "0" ]; then
echo -e "\n***\n*** Failed to start $SERVER\n***"
cat $SERVER_LOG
exit 1
fi

set +e

export MODEL_NAME='bls_onnx_warmup'
python3 $CLIENT_PY >> $CLIENT_LOG 2>&1
if [ $? -ne 0 ]; then
echo -e "\n***\n*** 'bls_onnx_warmup' test FAILED. \n***"
cat $CLIENT_LOG
RET=1
else
check_test_results $TEST_RESULT_FILE $EXPECTED_NUM_TESTS
if [ $? -ne 0 ]; then
cat $CLIENT_LOG
echo -e "\n***\n*** Test Result Verification Failed\n***"
RET=1
fi
fi

set -e


kill $SERVER_PID
wait $SERVER_PID


if [ $RET -eq 1 ]; then
cat $CLIENT_LOG
cat $SERVER_LOG
echo -e "\n***\n*** Test Failed \n***"
else
echo -e "\n***\n*** Test Passed \n***"
fi

exit $RET
38 changes: 38 additions & 0 deletions qa/python_models/bls_onnx_warmup/config.pbtxt
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
# Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

name: "bls_onnx_warmup"
backend: "python"

output [
{
name: "OUTPUT0"
data_type: TYPE_FP32
dims: [ 16 ]
}
]

instance_group [{ kind: KIND_CPU }]
87 changes: 87 additions & 0 deletions qa/python_models/bls_onnx_warmup/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import numpy as np
import unittest
import triton_python_backend_utils as pb_utils
from torch.utils.dlpack import from_dlpack


class PBBLSONNXWarmupTest(unittest.TestCase):

def test_onnx_output_mem_type(self):
input0_np = np.random.randn(*[16])
input0_np = input0_np.astype(np.float32)
input1_np = np.random.randn(*[16])
input1_np = input1_np.astype(np.float32)
input0 = pb_utils.Tensor('INPUT0', input0_np)
input1 = pb_utils.Tensor('INPUT1', input1_np)
infer_request = pb_utils.InferenceRequest(
model_name='onnx_nobatch_float32_float32_float32',
inputs=[input0, input1],
requested_output_names=['OUTPUT0', 'OUTPUT1'])

infer_response = infer_request.exec()

self.assertFalse(infer_response.has_error())

output0 = pb_utils.get_output_tensor_by_name(infer_response, 'OUTPUT0')
output1 = pb_utils.get_output_tensor_by_name(infer_response, 'OUTPUT1')

self.assertIsNotNone(output0)
self.assertIsNotNone(output1)

# The memory type of output tensor should be GPU
self.assertFalse(output0.is_cpu())
self.assertFalse(output1.is_cpu())

expected_output_0 = input0.as_numpy() - input1.as_numpy()
expected_output_1 = input0.as_numpy() + input1.as_numpy()

output0 = from_dlpack(
output0.to_dlpack()).to('cpu').cpu().detach().numpy()
output1 = from_dlpack(
output1.to_dlpack()).to('cpu').cpu().detach().numpy()

self.assertTrue(np.all(output0 == expected_output_0))
self.assertTrue(np.all(output1 == expected_output_1))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why mixing the test case with the model file, how does it get invoked?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm using Python model to run the unit test. It will be triggered by the python_unittest.py script, which is copied from L0_backend_python.



class TritonPythonModel:

def execute(self, requests):
responses = []
for _ in requests:
# Run the unittest and store the results in InferenceResponse.
test = unittest.main('model', exit=False)
responses.append(
pb_utils.InferenceResponse([
pb_utils.Tensor(
'OUTPUT0',
np.array([test.result.wasSuccessful()],
dtype=np.float16))
]))
return responses