Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add testing for variable GPU outputs in Python BE #5166

Merged
merged 2 commits into from
Dec 14, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 65 additions & 38 deletions qa/L0_backend_python/io/io_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,43 +59,42 @@ class IOTest(tu.TestResultCollector):

def setUp(self):
self._shm_leak_detector = shm_util.ShmLeakDetector()
self._client = grpcclient.InferenceServerClient("localhost:8001")

def _run_ensemble_test(self):
model_name = "ensemble_io"
user_data = UserData()
with grpcclient.InferenceServerClient("localhost:8001") as client:
input0 = np.random.random([1000]).astype(np.float32)
client.start_stream(callback=partial(callback, user_data))
for model_1_in_gpu in [True, False]:
for model_2_in_gpu in [True, False]:
for model_3_in_gpu in [True, False]:
gpu_output = np.asarray(
[model_1_in_gpu, model_2_in_gpu, model_3_in_gpu],
dtype=bool)
inputs = [
grpcclient.InferInput(
"INPUT0", input0.shape,
np_to_triton_dtype(input0.dtype)),
grpcclient.InferInput(
"GPU_OUTPUT", gpu_output.shape,
np_to_triton_dtype(gpu_output.dtype))
]
inputs[0].set_data_from_numpy(input0)
inputs[1].set_data_from_numpy(gpu_output)
client.async_stream_infer(model_name=model_name,
inputs=inputs)
if TRIAL == 'default':
input0 = np.random.random([1000]).astype(np.float32)
self._client.start_stream(callback=partial(callback, user_data))
for model_1_in_gpu in [True, False]:
for model_2_in_gpu in [True, False]:
for model_3_in_gpu in [True, False]:
gpu_output = np.asarray(
[model_1_in_gpu, model_2_in_gpu, model_3_in_gpu],
dtype=bool)
inputs = [
grpcclient.InferInput("INPUT0", input0.shape,
np_to_triton_dtype(input0.dtype)),
grpcclient.InferInput(
"GPU_OUTPUT", gpu_output.shape,
np_to_triton_dtype(gpu_output.dtype))
]
inputs[0].set_data_from_numpy(input0)
inputs[1].set_data_from_numpy(gpu_output)
self._client.async_stream_infer(model_name=model_name,
inputs=inputs)
if TRIAL == 'default':
result = user_data._completed_requests.get()
output0 = result.as_numpy('OUTPUT0')
self.assertIsNotNone(output0)
self.assertTrue(np.all(output0 == input0))
else:
response_repeat = 2
for _ in range(response_repeat):
result = user_data._completed_requests.get()
output0 = result.as_numpy('OUTPUT0')
self.assertIsNotNone(output0)
self.assertTrue(np.all(output0 == input0))
else:
response_repeat = 2
for _ in range(response_repeat):
result = user_data._completed_requests.get()
output0 = result.as_numpy('OUTPUT0')
self.assertIsNotNone(output0)
self.assertTrue(np.all(output0 == input0))

def test_ensemble_io(self):
# Only run the shared memory leak detection with the default trial
Expand All @@ -107,17 +106,45 @@ def test_ensemble_io(self):

def test_empty_gpu_output(self):
model_name = 'dlpack_empty_output'
with httpclient.InferenceServerClient("localhost:8000") as client:
input_data = np.array([[1.0]], dtype=np.float32)
inputs = [
httpclient.InferInput("INPUT", input_data.shape,
np_to_triton_dtype(input_data.dtype))
]
inputs[0].set_data_from_numpy(input_data)
result = client.infer(model_name, inputs)
input_data = np.array([[1.0]], dtype=np.float32)
inputs = [
grpcclient.InferInput("INPUT", input_data.shape,
np_to_triton_dtype(input_data.dtype))
]
inputs[0].set_data_from_numpy(input_data)
result = self._client.infer(model_name, inputs)
output = result.as_numpy('OUTPUT')
self.assertIsNotNone(output)
self.assertEqual(output.size, 0)

def test_variable_gpu_output(self):
# Input is not important in this test
model_name = 'variable_gpu_output'
input_data = np.array([[1.0]], dtype=np.float32)
inputs = [
grpcclient.InferInput("INPUT", input_data.shape,
np_to_triton_dtype(input_data.dtype))
]
inputs[0].set_data_from_numpy(input_data)
user_data = UserData()

# The test sends five requests to the model and the model returns five
# responses with different GPU output shapes
num_requests = 5
for _ in range(num_requests):
result = self._client.async_infer(model_name=model_name,
inputs=inputs,
callback=partial(
callback, user_data))

for i in range(num_requests):
result = user_data._completed_requests.get()
if result is InferenceServerException:
self.assertTrue(False, result)
output = result.as_numpy('OUTPUT')
self.assertIsNotNone(output)
self.assertEqual(output.size, 0)
self.assertEqual(output.size, i + 1)
np.testing.assert_almost_equal(output, np.ones(i + 1) * (i + 1))


if __name__ == '__main__':
Expand Down
32 changes: 31 additions & 1 deletion qa/L0_backend_python/io/test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,6 @@ for trial in $TRIALS; do
RET=1
fi
fi

set -e

kill $SERVER_PID
Expand Down Expand Up @@ -130,7 +129,38 @@ else
RET=1
fi
fi
set -e

kill $SERVER_PID
wait $SERVER_PID

# IOTest.test_variable_gpu_output
rm -rf models && mkdir models
mkdir -p models/variable_gpu_output/1/
cp ../../python_models/variable_gpu_output/model.py ./models/variable_gpu_output/1/
cp ../../python_models/variable_gpu_output/config.pbtxt ./models/variable_gpu_output/

run_server
if [ "$SERVER_PID" == "0" ]; then
echo -e "\n***\n*** Failed to start $SERVER\n***"
cat $SERVER_LOG
RET=1
fi

set +e
python3 $UNITTEST_PY IOTest.test_variable_gpu_output > $CLIENT_LOG.test_variable_gpu_output
if [ $? -ne 0 ]; then
echo -e "\n***\n*** IOTest.variable_gpu_output FAILED. \n***"
cat $CLIENT_LOG.test_variable_gpu_output
RET=1
else
check_test_results $TEST_RESULT_FILE $EXPECTED_NUM_TESTS
if [ $? -ne 0 ]; then
cat $CLIENT_LOG.test_variable_gpu_output
echo -e "\n***\n*** Test Result Verification Failed\n***"
RET=1
fi
fi
set -e

kill $SERVER_PID
Expand Down
23 changes: 8 additions & 15 deletions qa/python_models/dlpack_test/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,12 +37,11 @@ def test_pytorch_dlpack(self):
# Test different dtypes
pytorch_dtypes = [
torch.float16, torch.float32, torch.float64, torch.int8,
torch.int16, torch.int32, torch.int64, torch.uint8, torch.bool
Tabrizian marked this conversation as resolved.
Show resolved Hide resolved
torch.int16, torch.int32, torch.int64, torch.uint8
]

for pytorch_dtype in pytorch_dtypes:
pytorch_tensor = torch.rand([100], dtype=torch.float16) * 100
pytorch_tensor = pytorch_tensor.type(pytorch_dtype)
pytorch_tensor = torch.ones([100], dtype=pytorch_dtype)
dlpack_tensor = to_dlpack(pytorch_tensor)
pb_tensor = pb_utils.Tensor.from_dlpack('test_tensor',
dlpack_tensor)
Expand All @@ -54,14 +53,8 @@ def test_pytorch_dlpack(self):
pytorch_tensor_dlpack = from_dlpack(pb_tensor.to_dlpack())
self.assertTrue(torch.all(pytorch_tensor_dlpack == pytorch_tensor))

# DLPack does not properly support bool type:
# https://github.com/google/jax/issues/4719
if pytorch_dtype != torch.bool:
self.assertTrue(
pytorch_tensor.type() == pytorch_tensor_dlpack.type())
else:
self.assertFalse(
pytorch_tensor.type() == pytorch_tensor_dlpack.type())
self.assertTrue(
pytorch_tensor.type() == pytorch_tensor_dlpack.type())

def test_non_contiguous_error(self):
pytorch_tensor = torch.rand([20, 30], dtype=torch.float16)
Expand Down Expand Up @@ -92,13 +85,13 @@ def test_dlpack_gpu_tensors(self):
# Test different dtypes
pytorch_dtypes = [
torch.float16, torch.float32, torch.float64, torch.int8,
torch.int16, torch.int32, torch.int64, torch.uint8, torch.bool
torch.int16, torch.int32, torch.int64, torch.uint8
]

for pytorch_dtype in pytorch_dtypes:
pytorch_tensor = torch.rand(
[100], dtype=torch.float16, device='cuda') * 100
pytorch_tensor = pytorch_tensor.type(pytorch_dtype)
pytorch_tensor = torch.ones([100],
dtype=pytorch_dtype,
device='cuda')
dlpack_tensor = to_dlpack(pytorch_tensor)
pb_tensor = pb_utils.Tensor.from_dlpack('test_tensor',
dlpack_tensor)
Expand Down
55 changes: 55 additions & 0 deletions qa/python_models/variable_gpu_output/config.pbtxt
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

name: "variable_gpu_output"
backend: "python"
max_batch_size: 256

input [
{
name: "INPUT"
data_type: TYPE_FP32
dims: [ 1 ]
}
]
output [
{
name: "OUTPUT"
data_type: TYPE_FP32
dims: [ -1 ]
}
]

dynamic_batching {
max_queue_delay_microseconds: 1000000
}

instance_group [
{
count: 1
kind: KIND_GPU
}
]
47 changes: 47 additions & 0 deletions qa/python_models/variable_gpu_output/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import triton_python_backend_utils as pb_utils
import torch
from torch.utils.dlpack import to_dlpack


class TritonPythonModel:

def execute(self, requests):
# The client will send 5 requests
assert (len(requests) == 5)
responses = []
for i, request in enumerate(requests):
# Create an (i+1)-element array with all the tensors equal to (i+1)
output = torch.ones(i + 1, dtype=torch.float32, device='cuda')
output = output * (i + 1)
output_pb_tensor = pb_utils.Tensor.from_dlpack(
"OUTPUT", to_dlpack(output))
inference_response = pb_utils.InferenceResponse(
output_tensors=[output_pb_tensor])
responses.append(inference_response)
return responses