Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix MLFlow plugin. Add test #4186

Merged
merged 3 commits into from
Apr 8, 2022
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Dockerfile.QA
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,7 @@ RUN mkdir -p qa/common && \
cp ${TRITONTMP_DIR}/tritonbuild/tritonserver/install/backends/implicit_state/libtriton_implicit_state.so qa/L0_implicit_state/. && \
mkdir qa/L0_data_compression/models && \
cp -r /workspace/docs/examples/model_repository/simple qa/L0_data_compression/models && \
cp -r /workspace/deploy/mlflow-triton-plugin qa/L0_mlflow/. && \
cp ${TRITONTMP_DIR}/tritonbuild/tritonserver/install/bin/data_compressor_test qa/L0_data_compression/. && \
cp ${TRITONTMP_DIR}/tritonbuild/tritonserver/install/bin/metrics_api_test qa/L0_metrics/.

Expand Down
8 changes: 5 additions & 3 deletions deploy/mlflow-triton-plugin/mlflow_triton/deployments.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Copyright 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
Expand Down Expand Up @@ -240,7 +240,7 @@ def predict(self, deployment_name, df):
row, val.shape, np_to_triton_dtype(val.dtype)))
inputs[-1].set_data_from_numpy(val)
else:
for key, val in df:
for key, val in df.items():
inputs.append(
tritonhttpclient.InferInput(
key, val.shape, np_to_triton_dtype(val.dtype)))
Expand Down Expand Up @@ -317,10 +317,12 @@ def _get_copy_paths(self, artifact_path, name, flavor):
artifact_path, config_file)
copy_paths['config_path']['to'] = triton_deployment_dir
else:
# Make sure the directory has been created for config.pbtxt
os.makedirs(triton_deployment_dir, exist_ok=True)
# Provide a minimum config file so Triton knows what backend
# should be performing the auto-completion
config = '''
backend: "onnx"
backend: "onnxruntime"
default_model_filename: "{}"
'''.format(model_file)
with open(os.path.join(triton_deployment_dir, "config.pbtxt"),
Expand Down
93 changes: 93 additions & 0 deletions qa/L0_mlflow/plugin_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
#!/usr/bin/python

# Copyright 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import sys
sys.path.append("../common")

import sys
import unittest
import test_util as tu
from mlflow.deployments import get_deploy_client
import json
import numpy as np


class PluginTest(tu.TestResultCollector):

def setUp(self):
self.client_ = get_deploy_client('triton')

def test_onnx_flavor(self):
# Log the ONNX model to MLFlow
import mlflow.onnx
import onnx
model = onnx.load(
"./mlflow-triton-plugin/examples/onnx_float32_int32_int32/1/model.onnx"
)
# Use a different name to ensure the plugin operates on correct model
mlflow.onnx.log_model(model,
"triton",
registered_model_name="onnx_model")

# create
self.client_.create_deployment("onnx_model",
"models:/onnx_model/1",
flavor="onnx")

# list
deployment_list = self.client_.list_deployments()
self.assertEqual(len(deployment_list), 1)
self.assertEqual(deployment_list[0]['name'], "onnx_model")

# get
deployment = self.client_.get_deployment("onnx_model")
self.assertEqual(deployment['name'], "onnx_model")

# predict
inputs = {}
with open("./mlflow-triton-plugin/examples/input.json", "r") as f:
input_json = json.load(f)
for key, value in input_json['inputs'].items():
inputs[key] = np.array(value, dtype=np.float32)

output = self.client_.predict("onnx_model", inputs)
with open("./mlflow-triton-plugin/examples/expected_output.json",
"r") as f:
output_json = json.load(f)
for key, value in output_json['outputs'].items():
np.testing.assert_allclose(
output['outputs'][key],
np.array(value, dtype=np.int32),
err_msg='Inference result is not correct')

# delete
self.client_.delete_deployment("onnx_model")


if __name__ == '__main__':
unittest.main()
166 changes: 166 additions & 0 deletions qa/L0_mlflow/test.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
#!/bin/bash
# Copyright 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

export CUDA_VISIBLE_DEVICES=0

source ../common/util.sh

rm -fr *.log *.json

RET=0

# Set up MLflow and dependencies used by the test
pip install mlflow onnx onnxruntime

# Set environment variables for MLFlow and Triton plugin
export MLFLOW_MODEL_REPO=./mlflow/artifacts
export MLFLOW_TRACKING_URI=sqlite:////tmp/mlflow-db.sqlite
export TRITON_URL=localhost:8000
export TRITON_MODEL_REPO=models
mkdir -p ./mlflow/artifacts

pip install ./mlflow-triton-plugin/

rm -rf ./models
mkdir -p ./models
SERVER=/opt/tritonserver/bin/tritonserver
SERVER_ARGS="--model-repository=./models --strict-model-config=false --model-control-mode=explicit"
SERVER_LOG="./inference_server.log"
run_server
if [ "$SERVER_PID" == "0" ]; then
echo -e "\n***\n*** fail to start $SERVER\n***"
cat $SERVER_LOG
exit 1
fi

# Triton flavor with CLI
set +e
CLI_LOG=plugin_cli.log
CLI_RET=0
python ./mlflow-triton-plugin/scripts/publish_model_to_mlflow.py \
--model_name onnx_float32_int32_int32 \
--model_directory ./mlflow-triton-plugin/examples/onnx_float32_int32_int32/ \
--flavor triton >>$CLI_LOG 2>&1
if [ $? -ne 0 ]; then
echo -e "\n***\n*** Expect 'triton' flavor model is logged to MLFlow\n***"
CLI_RET=1
fi
if [ $CLI_RET -eq 0 ]; then
mlflow deployments create -t triton --flavor triton \
--name onnx_float32_int32_int32 -m models:/onnx_float32_int32_int32/1 >>$CLI_LOG 2>&1
if [ $? -ne 0 ]; then
echo -e "\n***\n*** Expect 'triton' flavor model is deployed via MLFlow\n***"
CLI_RET=1
fi
fi
if [ $CLI_RET -eq 0 ]; then
mlflow deployments list -t triton >>$CLI_LOG 2>&1
if [ $? -ne 0 ]; then
CLI_RET=1
fi
if [ `grep -c "onnx_float32_int32_int32.*READY" $CLI_LOG` != "1" ]; then
echo -e "\n***\n*** Expect deployed 'triton' flavor model to be listed\n***"
CLI_RET=1
fi
fi
if [ $CLI_RET -eq 0 ]; then
mlflow deployments get -t triton --name onnx_float32_int32_int32 >>$CLI_LOG 2>&1
if [ $? -ne 0 ]; then
CLI_RET=1
fi
if [ `grep -c "^name: onnx_float32_int32_int32" $CLI_LOG` != "1" ]; then
echo -e "\n***\n*** Expect deployed 'triton' flavor model is found\n***"
CLI_RET=1
fi
fi
if [ $CLI_RET -eq 0 ]; then
mlflow deployments predict -t triton --name onnx_float32_int32_int32 --input-path ./mlflow-triton-plugin/examples/input.json --output-path output.json >>$CLI_LOG 2>&1
if [ $? -ne 0 ]; then
echo -e "\n***\n*** Expect successful 'triton' flavor model prediction\n***"
CLI_RET=1
fi
python - << EOF
import json
with open("./output.json", "r") as f:
output = json.load(f)
with open("./mlflow-triton-plugin/examples/expected_output.json", "r") as f:
expected_output = json.load(f)
if output == expected_output:
exit(0)
else:
exit(1)
EOF
if [ $? -ne 0 ]; then
echo -e "\n***\n*** Expect 'triton' flavor model prediction matches expected output\n***"
echo -e "Expect:\n"
cat ./mlflow-triton-plugin/examples/expected_output.json
echo -e "\n\nGot:\n"
cat output.json
CLI_RET=1
fi
fi
if [ $CLI_RET -eq 0 ]; then
mlflow deployments delete -t triton --name onnx_float32_int32_int32 >>$CLI_LOG 2>&1
if [ $? -ne 0 ]; then
echo -e "\n***\n*** Expect successful deletion of 'triton' flavor model\n***"
CLI_RET=1
fi
fi
if [ $CLI_RET -ne 0 ]; then
cat $CLI_LOG
echo -e "\n***\n*** MLFlow Triton plugin CLI Test FAILED\n***"
RET=1
fi
set -e

set +e
PY_LOG=plugin_py.log
PY_TEST=plugin_test.py
TEST_RESULT_FILE='test_results.txt'
python $PY_TEST >>$PY_LOG 2>&1
if [ $? -ne 0 ]; then
cat $PY_LOG
echo -e "\n***\n*** Python Test Failed\n***"
RET=1
else
check_test_results $TEST_RESULT_FILE 1
if [ $? -ne 0 ]; then
cat $PY_LOG
echo -e "\n***\n*** Test Result Verification Failed\n***"
RET=1
fi
fi
set -e

kill_server
if [ $RET -eq 0 ]; then
echo -e "\n***\n*** Test Passed\n***"
else
echo -e "\n***\n*** Test FAILED\n***"
fi

exit $RET