Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Aggregate trial statistics #112

Merged
merged 4 commits into from
Jun 8, 2022
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
217 changes: 216 additions & 1 deletion src/c++/perf_analyzer/inference_profiler.cc
Original file line number Diff line number Diff line change
Expand Up @@ -573,8 +573,10 @@ InferenceProfiler::ProfileHelper(
LoadStatus load_status;
size_t completed_trials = 0;
std::queue<cb::Error> error;
std::deque<PerfStatus> perf_status;

do {
PerfStatus status_summary;
RETURN_IF_ERROR(manager_->CheckHealth());

// Needed to obtain stable measurements
Expand All @@ -587,8 +589,11 @@ InferenceProfiler::ProfileHelper(
} else {
error.push(Measure(status_summary, measurement_request_count_, true));
}
if (error.size() >= load_parameters_.stability_window) {
perf_status.push_back(status_summary);

if (error.size() > load_parameters_.stability_window) {
error.pop();
perf_status.pop_front();
}

if (error.back().IsOk()) {
Expand Down Expand Up @@ -648,6 +653,7 @@ InferenceProfiler::ProfileHelper(
(latency_threshold_ms_ * 1000 * 1000))) {
within_threshold = true;
}

// We call it complete only if stability_window measurements are within
// +/-(stability_threshold)% of the average infer per second and latency
if ((load_status.infer_per_sec[idx] <
Expand Down Expand Up @@ -681,6 +687,7 @@ InferenceProfiler::ProfileHelper(
completed_trials++;
} while ((!early_exit) && (completed_trials < max_trials_));


// return the appropriate error which might have occured in the
// stability_window for its proper handling.
while (!error.empty()) {
Expand All @@ -690,13 +697,219 @@ InferenceProfiler::ProfileHelper(
error.pop();
}
}
RETURN_IF_ERROR(MergePerfStatusReports(perf_status, status_summary));

if (early_exit) {
return cb::Error("Received exit signal.");
}
return cb::Error::Success;
}

cb::Error
InferenceProfiler::MergeServerSideStats(
std::vector<ServerSideStats>& server_side_stats,
ServerSideStats& server_side_summary)
{
auto& server_side_stat = server_side_stats[0];

// Make sure that the perf status reports profiling settings match with each
// other.
for (size_t i = 1; i < server_side_stats.size(); i++) {
if (server_side_stats[i].composing_models_stat.size() !=
server_side_stat.composing_models_stat.size()) {
return cb::Error(
"Inconsistent ensemble setting detected between the trials.");
}
}

// Initialize the server stats for the merged report.
server_side_summary.inference_count = 0;
server_side_summary.execution_count = 0;
server_side_summary.cache_hit_count = 0;
server_side_summary.cache_miss_count = 0;
server_side_summary.success_count = 0;
server_side_summary.queue_count = 0;
server_side_summary.compute_input_count = 0;
server_side_summary.compute_output_count = 0;
server_side_summary.compute_infer_count = 0;
server_side_summary.cumm_time_ns = 0;
server_side_summary.queue_time_ns = 0;
server_side_summary.compute_input_time_ns = 0;
server_side_summary.compute_infer_time_ns = 0;
server_side_summary.compute_output_time_ns = 0;
server_side_summary.cache_hit_time_ns = 0;
server_side_summary.cache_miss_time_ns = 0;
server_side_summary.composing_models_stat.clear();
for (auto& composing_model_stat : server_side_stat.composing_models_stat) {
std::vector<ServerSideStats> composing_model_stats;
for (auto& server_side_stat : server_side_stats) {
composing_model_stats.push_back(
server_side_stat.composing_models_stat[composing_model_stat.first]);
}

ServerSideStats merged_composing_model_stats;
RETURN_IF_ERROR(MergeServerSideStats(
composing_model_stats, merged_composing_model_stats));
server_side_summary.composing_models_stat.insert(
{composing_model_stat.first, merged_composing_model_stats});
}

for (auto& server_side_stat : server_side_stats) {
// Aggregated Server Stats
server_side_summary.inference_count += server_side_stat.inference_count;
server_side_summary.execution_count += server_side_stat.execution_count;
server_side_summary.cache_hit_count += server_side_stat.cache_hit_count;
server_side_summary.cache_miss_count += server_side_stat.cache_miss_count;
server_side_summary.success_count += server_side_stat.success_count;
server_side_summary.queue_count += server_side_stat.queue_count;
server_side_summary.compute_input_count +=
server_side_stat.compute_input_count;
server_side_summary.compute_infer_count +=
server_side_stat.compute_infer_count;
server_side_summary.compute_output_count +=
server_side_stat.compute_output_count;
server_side_summary.cumm_time_ns += server_side_stat.cumm_time_ns;
server_side_summary.queue_time_ns += server_side_stat.queue_time_ns;
server_side_summary.compute_input_time_ns +=
server_side_stat.compute_input_time_ns;
server_side_summary.compute_infer_time_ns +=
server_side_stat.compute_infer_time_ns;
server_side_summary.compute_output_time_ns +=
server_side_stat.compute_output_time_ns;
server_side_summary.cache_hit_time_ns += server_side_stat.cache_hit_time_ns;
server_side_summary.cache_miss_time_ns +=
server_side_stat.cache_miss_time_ns;
}

return cb::Error::Success;
}

cb::Error
InferenceProfiler::MergePerfStatusReports(
std::deque<PerfStatus>& perf_status_reports, PerfStatus& summary_status)
{
if (perf_status_reports.size() != load_parameters_.stability_window) {
return cb::Error(
"Perf Status reports size must match the stability window.");
}

auto& perf_status = perf_status_reports[0];

// Make sure that the perf status reports profiling settings match with each
// other.
for (size_t i = 1; i < perf_status_reports.size(); i++) {
perf_status.concurrency = summary_status.concurrency;
perf_status.request_rate = summary_status.request_rate;

if (perf_status_reports[i].on_sequence_model !=
perf_status.on_sequence_model) {
return cb::Error("Incosistent sequence setting detected.");
}

if (perf_status_reports[i].batch_size != perf_status.batch_size) {
return cb::Error("Incosistent batch size detected.");
}

if (perf_status_reports[i].server_stats.composing_models_stat.size() !=
perf_status.server_stats.composing_models_stat.size()) {
return cb::Error(
"Inconsistent ensemble setting detected between the trials.");
}
}

summary_status.batch_size = perf_status.batch_size;
summary_status.on_sequence_model = perf_status.on_sequence_model;

// Initialize the client stats for the merged report.
summary_status.client_stats.request_count = 0;
summary_status.client_stats.sequence_count = 0;
summary_status.client_stats.delayed_request_count = 0;
summary_status.client_stats.duration_ns = 0;
summary_status.client_stats.avg_latency_ns = 0;
summary_status.client_stats.percentile_latency_ns.clear();
summary_status.client_stats.latencies.clear();
summary_status.client_stats.std_us = 0;
summary_status.client_stats.avg_request_time_ns = 0;
summary_status.client_stats.avg_send_time_ns = 0;
summary_status.client_stats.avg_receive_time_ns = 0;
summary_status.client_stats.infer_per_sec = 0;
summary_status.client_stats.sequence_per_sec = 0;
summary_status.client_stats.completed_count = 0;
summary_status.stabilizing_latency_ns = 0;

std::vector<ServerSideStats> server_side_stats;
for (auto& perf_status : perf_status_reports) {
// Aggregated Client Stats
summary_status.client_stats.request_count +=
perf_status.client_stats.request_count;
summary_status.client_stats.sequence_count +=
perf_status.client_stats.sequence_count;
summary_status.client_stats.delayed_request_count +=
perf_status.client_stats.delayed_request_count;
summary_status.client_stats.duration_ns +=
perf_status.client_stats.duration_ns;

server_side_stats.push_back(perf_status.server_stats);

summary_status.client_stats.latencies.insert(
summary_status.client_stats.latencies.end(),
perf_status.client_stats.latencies.begin(),
perf_status.client_stats.latencies.end());
}

if (include_lib_stats_) {
for (auto& perf_status : perf_status_reports) {
summary_status.client_stats.completed_count +=
perf_status.client_stats.completed_count;

summary_status.client_stats.avg_request_time_ns +=
perf_status.client_stats.avg_request_time_ns *
perf_status.client_stats.completed_count;

summary_status.client_stats.avg_send_time_ns +=
perf_status.client_stats.avg_send_time_ns *
perf_status.client_stats.completed_count;

summary_status.client_stats.avg_receive_time_ns +=
perf_status.client_stats.avg_receive_time_ns *
perf_status.client_stats.completed_count;
}

if (summary_status.client_stats.completed_count != 0) {
summary_status.client_stats.avg_request_time_ns =
summary_status.client_stats.avg_request_time_ns /
summary_status.client_stats.completed_count;

summary_status.client_stats.avg_send_time_ns =
summary_status.client_stats.avg_send_time_ns /
summary_status.client_stats.completed_count;

summary_status.client_stats.avg_receive_time_ns =
summary_status.client_stats.avg_receive_time_ns /
summary_status.client_stats.completed_count;
}
}

RETURN_IF_ERROR(
MergeServerSideStats(server_side_stats, summary_status.server_stats));

std::sort(
summary_status.client_stats.latencies.begin(),
summary_status.client_stats.latencies.end());

float client_duration_sec =
(float)summary_status.client_stats.duration_ns / NANOS_PER_SECOND;
summary_status.client_stats.sequence_per_sec =
summary_status.client_stats.sequence_count / client_duration_sec;
summary_status.client_stats.infer_per_sec =
(summary_status.client_stats.request_count * summary_status.batch_size) /
client_duration_sec;
RETURN_IF_ERROR(
SummarizeLatency(summary_status.client_stats.latencies, summary_status));

return cb::Error::Success;
}

cb::Error
InferenceProfiler::GetServerSideStatus(
std::map<cb::ModelIdentifier, cb::ModelStatistics>* model_stats)
Expand Down Expand Up @@ -793,6 +1006,7 @@ InferenceProfiler::Summarize(
RETURN_IF_ERROR(SummarizeClientStat(
start_stat, end_stat, valid_range.second - valid_range.first,
latencies.size(), valid_sequence_count, delayed_request_count, summary));
summary.client_stats.latencies = std::move(latencies);

if (include_server_stats_) {
RETURN_IF_ERROR(SummarizeServerStats(
Expand Down Expand Up @@ -951,6 +1165,7 @@ InferenceProfiler::SummarizeClientStat(
end_stat.completed_request_count - start_stat.completed_request_count;
uint64_t request_time_ns = end_stat.cumulative_total_request_time_ns -
start_stat.cumulative_total_request_time_ns;
summary.client_stats.completed_count = completed_count;
uint64_t send_time_ns =
end_stat.cumulative_send_time_ns - start_stat.cumulative_send_time_ns;
uint64_t receive_time_ns = end_stat.cumulative_receive_time_ns -
Expand Down
36 changes: 30 additions & 6 deletions src/c++/perf_analyzer/inference_profiler.h
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once

#include <deque>
#include <thread>
#include "concurrency_manager.h"
#include "custom_load_manager.h"
Expand Down Expand Up @@ -116,6 +117,8 @@ struct ClientSideStats {
uint64_t avg_latency_ns;
// a ordered map of percentiles to be reported (<percentile, value> pair)
std::map<size_t, uint64_t> percentile_latency_ns;
// List of all the valid latencies.
std::vector<uint64_t> latencies;
// Using usec to avoid square of large number (large in nsec)
uint64_t std_us;
uint64_t avg_request_time_ns;
Expand All @@ -124,6 +127,9 @@ struct ClientSideStats {
// Per sec stat
double infer_per_sec;
double sequence_per_sec;

// Completed request count reported by the client library
uint64_t completed_count;
};

/// The entire statistics record.
Expand Down Expand Up @@ -291,12 +297,12 @@ class InferenceProfiler {
const size_t concurrent_request_count, std::vector<PerfStatus>& summary,
bool* meets_threshold);

/// Similar to above function, but instead of setting the concurrency, it sets
/// the specified request rate for measurements.
/// \param request_rate The request rate for inferences.
/// \param summary Appends the measurements summary at the end of this list.
/// \param meets_threshold Returns whether the setting meets the threshold.
/// \return cb::Error object indicating success or failure.
/// Similar to above function, but instead of setting the concurrency, it
/// sets the specified request rate for measurements. \param request_rate
Tabrizian marked this conversation as resolved.
Show resolved Hide resolved
/// The request rate for inferences. \param summary Appends the
/// measurements summary at the end of this list. \param meets_threshold
/// Returns whether the setting meets the threshold. \return cb::Error
/// object indicating success or failure.
cb::Error Profile(
const double request_rate, std::vector<PerfStatus>& summary,
bool* meets_threshold);
Expand Down Expand Up @@ -442,6 +448,24 @@ class InferenceProfiler {
/// \return True if all MPI ranks are stable.
bool AllMPIRanksAreStable(bool current_rank_stability);

/// Merge individual perf status reports into a single perf status. This
/// function is used to merge the results from multiple Measure runs into a
/// single report.
/// \param perf_status List of perf status reports to be merged.
/// \param summary_status Final merged summary status.
/// \return cb::Error object indicating success or failure.
cb::Error MergePerfStatusReports(
std::deque<PerfStatus>& perf_status, PerfStatus& summary_status);

/// Merge individual server side statistics into a single server side report.
/// \param server_side_stats List of server side statistics reports to be
/// merged.
/// \param server_side_summary Final merged summary status.
/// \return cb::Error object indicating success or failure.
cb::Error MergeServerSideStats(
std::vector<ServerSideStats>& server_side_stats,
ServerSideStats& server_side_summary);

bool verbose_;
uint64_t measurement_window_ms_;
uint64_t measurement_request_count_;
Expand Down
19 changes: 15 additions & 4 deletions src/c++/perf_analyzer/perf_analyzer.cc
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,15 @@ SignalHandler(int signum)
// specified, the selected percentile value will be reported instead of
// average value.
//
// Perf Analyzer determines the stability of throughput and latency by observing
Tabrizian marked this conversation as resolved.
Show resolved Hide resolved
// observing measurements in different trials. If the latency and throughput,
// are within the stability percentage (see --stability-percentage option) Perf
// Analyzer will report the average of the throughput and latency numbers
// observed in the last three trials. All the measurements gathered during the
// last three trials is aggregated to generate a single report. The number of
// total requests is the sum of all the requests in the individual measurement
// windows.
//
// There are broadly three ways to load server for the data collection using
// perf_analyzer:
// - Maintaining Target Concurrency:
Expand Down Expand Up @@ -172,16 +181,15 @@ SignalHandler(int signum)
// --concurrency-range: The range of concurrency levels perf_analyzer will use.
// A concurrency level indicates the number of concurrent requests in queue.
// --request-rate-range: The range of request rates perf_analyzer will use to
// load
// the server.
// load the server.
// --request-intervals: File containing time intervals (in microseconds) to use
// between successive requests.
// --latency-threshold: latency threshold in msec.
// --measurement-interval: time interval for each measurement window in msec.
// --async: Enables Asynchronous inference calls.
// --binary-search: Enables binary search within the specified range.
// --request-distribution: Allows user to specify the distribution for selecting
// the time intervals between the request dispatch.
// the time intervals between the request dispatch.
//
// For detail of the options not listed, please refer to the usage.
//
Expand Down Expand Up @@ -483,7 +491,10 @@ Usage(char** argv, const std::string& msg = std::string())
"latency measurements when determining if a result is stable. The "
"measurement is considered as stable if the recent 3 measurements "
"are within +/- (stability percentage)% of their average in terms "
"of both infer per second and latency. Default is 10(%).",
"of both infer per second and latency. When perf analyzer "
"determines that the measurements are stable, it returns average "
"of the measurements collected in the last 3 windows. Default is "
"10(%).",
18)
<< std::endl;
std::cerr << FormatMessage(
Expand Down