Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Urdu (ur) Translation #1131

Merged
merged 11 commits into from
Feb 29, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
The table of contents is too big for display.
Diff view
Diff view
  •  
  •  
  •  
Next Next commit
urdu translation
  • Loading branch information
AsharibAli committed Feb 13, 2024
commit c2ad88a18b5aaeca928a8f5b6285d463fbd4671a
71 changes: 71 additions & 0 deletions i18n/ur/docusaurus-plugin-content-docs/current.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
{
"sidebar.tutorialSidebar.category.😃 Basics": {
"message": "😃 بنیادی باتیں "
},
"sidebar.tutorialSidebar.category.😃 Basics.link.generated-index.description": {
"message": ""
},
"sidebar.tutorialSidebar.category.💼 Basic Applications": {
"message": "💼 بنیادی ایپلی کیشنز "
},
"sidebar.tutorialSidebar.category.🧙‍♂️ Intermediate": {
"message": "🧙‍♂️ انٹرمیڈیٹ "
},
"sidebar.tutorialSidebar.category.🧙‍♂️ Intermediate.link.generated-index.description": {
"message": ""
},
"sidebar.tutorialSidebar.category.🧪 Applied Prompting": {
"message": "🧪 اپلائیڈ پرامٹنگ "
},
"sidebar.tutorialSidebar.category.🧪 Applied Prompting.link.generated-index.description": {
"message": ""
},
"sidebar.tutorialSidebar.category.🚀 Advanced Applications": {
"message": "🚀 اعلی درجے کی ایپلی کیشنز "
},
"sidebar.tutorialSidebar.category.🚀 Advanced Applications.link.generated-index.description": {
"message": ""
},
"sidebar.tutorialSidebar.category.⚖️ Reliability": {
"message": "⚖️ بھروسہ"
},
"sidebar.tutorialSidebar.category.⚖️ Reliability.link.generated-index.description": {
"message": ""
},
"sidebar.tutorialSidebar.category.🖼️ Image Prompting": {
"message": "🖼️ امیج پرامپٹنگ "
},
"sidebar.tutorialSidebar.category.🖼️ Image Prompting.link.generated-index.description": {
"message": ""
},
"sidebar.tutorialSidebar.category.🔓 Prompt Hacking": {
"message": "🔓 پرامپٹ ہیکنگ"
},
"sidebar.tutorialSidebar.category.🔓 Prompt Hacking.link.generated-index.description": {
"message": ""
},
"sidebar.tutorialSidebar.category.🔨 Tooling": {
"message": "🔨 ٹولنگ"
},
"sidebar.tutorialSidebar.category.🔨 Tooling.link.generated-index.description": {
"message": ""
},
"sidebar.tutorialSidebar.category.Prompt Engineering IDEs": {
"message": ""
},
"sidebar.tutorialSidebar.category.Prompt Engineering IDEs.link.generated-index.description": {
"message": ""
},
"sidebar.tutorialSidebar.category.💪 Prompt Tuning": {
"message": "💪 پرامپٹ ٹیوننگ"
},
"sidebar.tutorialSidebar.category.💪 Prompt Tuning.link.generated-index.description": {
"message": ""
},
"sidebar.tutorialSidebar.category.🎲 Miscellaneous": {
"message": "🎲 متفرق"
},
"sidebar.tutorialSidebar.category.🎲 Miscellaneous.link.generated-index.description": {
"message": ""
}
}
59 changes: 59 additions & 0 deletions i18n/ur/docusaurus-plugin-content-docs/current/additional.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
---
sidebar_position: 3000
---

# 🛸 اضافی وسائل

## انٹرایکٹو ٹیوٹوریلز
* [agents.blue](https://www.agents.blue/) - پرامپٹ انجینئرنگ پر ایک مفت، رہنمائی والا ٹیوٹوریل۔

## حوالہ جات

* [نیشن کے پرامپٹ لیک ہونے پر مضمون](https://lspace.swyx.io/p/reverse-prompt-eng)
* [ایپلی کیشنز پر ایک زبردست مضمون](https://huyenchip.com/2023/04/11/llm-engineering.html)<br/>
* [ایک لاجواب PE تعارفی ویڈیو](https://youtube.com/watch?v=dOxUroR57xs&feature=shares)<br/>
* [ایک بہت ہی عمدہ، مختصر پرامپٹ انجینئرنگ گائیڈ](https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api)<br/>
* [ایک زبردست پرامپٹ انجینئرنگ تعارف](https://humanloop.com/blog/prompt-engineering-101)<br/>
* [پرامپٹ انجینئرنگ پیپرز کا ایک عمدہ مجموعہ](https://github.com/dair-ai/Prompt-Engineering-Guide)<br/>
* [بہت سے پرامپٹ انجینئرنگ پیپرز](https://github.com/thunlp/PromptPapers)<br/>
* [CMU کلاس آن پرامپٹ انجینئرنگ](https://youtu.be/5ef83Wljm-M)<br/>
* [کوپائلٹ کیسے کام کرتا ہے](https://thakkarparth007.github.io/copilot-explorer/posts/copilot-internals.html)<br/>
* [زپیئر کی طرف سے فوری تحریر کے لیے ایک ابتدائی رہنما](https://zapier.com/blog/gpt-3-prompt/)<br/>
* [بہت اچھے A-Z پرامپٹ-انجینئرنگ وسائل کی فہرست](https://github.com/promptslab/Awesome-Prompt-Engineering)<br/>
* [500 ChatGPT پرامپٹ ٹیمپلیٹس](https://www.notion.so/500-ChatGPT-Prompt-Templates-d9541e901b2b4e8f800e819bdc0256da)<br/>
* [پرامپٹ بیس](https://promptbase.com/) <br/>
* [پرامپٹ وائبس](https://www.promptvibes.com/) <br/>
* [پرامپٹ ہیرو](https://prompthero.com/)
* [مڈجرنی کمیونٹی شوکیس پرامپٹس کے ساتھ](https://www.midjourney.com/showcase/recent/)<br/>
* [ڈیٹا سائنس پرامپٹس](https://github.com/travistangvh/ChatGPT-Data-Science-Prompts.git)
* [مڈجرنی کے لیے تمام طرزیں اور حوالہ جات](https://github.com/willwulfken/MidJourney-Styles-and-Keywords-Reference)<br/>
* [ایڈوانسڈ پرامپٹ انجینئرنگ](https://jamesbachini.com/advanced-midjourney-prompt-engineering/#midjourney-flags)
* [عام لوگوں کا پرامپٹ](https://www.ordinarypeopleprompts.com/)

### جی پی ٹی-3 پرامپٹ مثالیں/آئیڈیاز

https://sharegpt.com <br/>
https://www.learngpt.com <br/>
https://chatgpt.getlaunchlist.com <br/>
https://prompts.chat


## حقائق

GPT-3 *نہیں* تعییناتی ہے: https://twitter.com/BorisMPower/status/1608522707372740609

## پیروی کرنے والے لوگ

میں ان لوگوں سے اہم مواد حاصل کرتا ہوں۔

[@chillzaza_](https://mobile.twitter.com/chillzaza_) پرامپٹ انجینئرنگ، ٹولز، ٹول بوٹ<br/>
[@mathemagic1an](https://mobile.twitter.com/mathemagic1an) مختلف پرامپٹ، PE، GPT3 کی معلومات<br/>
[@goodside](https://twitter.com/goodside/status/1588247865503010816) پرامپٹ انجیکشن، پی ای ٹولنگ<br/>
[@hwchase17](https://twitter.com/hwchase17) langchain کا بنیادی دیو<br/>
[@omarsar0](https://twitter.com/omarsar0) DAIR AI لیڈ

ان اکاؤنٹس کو بھی چیک کریں جن کی میں پیروی کرتا ہوں: https://twitter.com/learnprompting/following

## اس سے بھی زیادہ

چیک کریں [اوپن ایشوز](https://github.com/trigaten/Learn_Prompting/issues) اور [PRs](https://github.com/trigaten/Learn_Prompting/pulls) :)
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
{
"label": "🚀 Advanced Applications",
"position": 20,
"link": {
"type": "generated-index",
"description": "Some very powerful, but more advanced applications of prompt engineering."
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
---
sidebar_position: 2
---

# 🟡 LLMs Using Tools

MRKL Systems(@karpas2022mrkl) (Modular Reasoning, Knowledge and Language, pronounced "miracle")
are a **neuro-symbolic architecture** that combine LLMs (neural computation) and external
tools like calculators (symbolic computation), to solve complex problems.

A MRKL system is composed of a set of modules (e.g. a calculator, weather API, database, etc.) and a router that decides how to 'route' incoming natural language queries to the appropriate module.

A simple example of a MRKL system is a LLM that can
use a calculator app. This is a single module system, where the LLM is the router.
When asked, `What is 100*100?`, the LLM can choose to
extract the numbers from the prompt, and then tell the MRKL System to use a calculator
app to compute the result. This might look like the following:

<pre>
<p>What is 100*100?</p>

<span className="bluegreen-highlight">CALCULATOR[100*100]</span>
</pre>

The MRKL system would see the word `CALCULATOR` and plug `100*100` into the calculator app.
This simple idea can easily be expanded to various symbolic computing tools.

Consider the following additional examples of applications:

- A chatbot that is able to respond to questions about a financial database by
extracting information to form a SQL query from a users' text.

<pre>
<p>What is the price of Apple stock right now?</p>

<span className="bluegreen-highlight">The current price is DATABASE[SELECT price FROM stock WHERE company = "Apple" AND time = "now"].</span>
</pre>

- A chatbot that is able to respond to questions about the weather by extracting
information from the prompt and using a weather API to retrieve the information.

<pre>
<p>What is the weather like in New York?</p>

<span className="bluegreen-highlight">The weather is WEATHER_API[New York].</span>
</pre>

- Or even much more complex tasks that depend on multiple datasources, such as the
following:


import mrkl_task from '@site/docs/assets/advanced/mrkl_task.webp';
import dataset from '@site/docs/assets/advanced/mrkl/dataset.webp';
import load_dataset from '@site/docs/assets/advanced/mrkl/load_dataset.webp';
import model from '@site/docs/assets/advanced/mrkl/model.webp';
import extract from '@site/docs/assets/advanced/mrkl/extract.webp';
import search from '@site/docs/assets/advanced/mrkl/search.webp';
import final from '@site/docs/assets/advanced/mrkl/final.webp';

<div style={{textAlign: 'center'}}>
<img src={mrkl_task} style={{width: "500px"}}/>
</div>

<div style={{textAlign: 'center'}}>
Example MRKL System (AI21)
</div>


## An Example

I have reproduced an example MRKL System from the original paper, using Dust.tt,
linked [here](https://dust.tt/w/ddebdfcdde/a/98bdd65cb7).
The system reads a math problem (e.g. `What is 20 times 5^6?`), extracts the numbers and the operations,
and reformats them for a calculator app (e.g. `20*5^6`). It then sends the reformatted equation
to Google's calculator app, and returns the result. Note that the original paper performs prompt tuning on the router (the LLM), but I do not in this example. Let's walk through how this works:

First, I made a simple dataset in the Dust `Datasets` tab.


<div style={{textAlign: 'center'}}>
<LazyLoadImage src={dataset} style={{width: "750px"}} />
</div>

Then, I switched to the `Specification` tab and loaded the dataset using an `input` block.

<div style={{textAlign: 'center'}}>
<LazyLoadImage src={load_dataset} style={{width: "750px"}} />
</div>

Next, I created a `llm` block that extracts the numbers and operations. Notice how
in the prompt I told it we would be using Google's calculator. The model I use (GPT-3)
likely has some knowledge of Google's calculator from pretraining.

<div style={{textAlign: 'center'}}>
<LazyLoadImage src={model} style={{width: "750px"}} />
</div>

Then, I made a `code` block, which runs some simple javascript code to remove
spaces from the completion.

<div style={{textAlign: 'center'}}>
<LazyLoadImage src={extract} style={{width: "750px"}} />
</div>

Finally, I made a `search` block that sends the reformatted equation to Google's calculator.

<div style={{textAlign: 'center'}}>
<LazyLoadImage src={search} style={{width: "750px"}} />
</div>

Below we can see the final results, which are all correct!

<div style={{textAlign: 'center'}}>
<LazyLoadImage src={final} style={{width: "750px"}} />
</div>

Feel free to clone and experiment with this playground [here](https://dust.tt/w/ddebdfcdde/a/98bdd65cb7).

## Notes
MRKL was developed by [AI21](https://www.ai21.com/) and originally used their
J-1 (Jurassic 1)(@lieberjurassic) LLM.

## More

See [this example](https://python.langchain.com/docs/modules/agents/how_to/mrkl) of a MRKL System
built with LangChain.
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
---
sidebar_position: 1
---

# 🟢 Introduction

We have seen a number of prompting/prompt engineering methods thus far.
Now we will cover some advanced applications of prompting that can solve
complex reasoning tasks by performing searches for information via the internet,
or other external sources.
Loading