Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Updated semantic conventions based on otel community #884

Merged
merged 6 commits into from
Apr 29, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -110,8 +110,8 @@ def _set_input_attributes(span, kwargs):
set_span_attribute(
span, SpanAttributes.LLM_REQUEST_MAX_TOKENS, kwargs.get("max_tokens_to_sample")
)
set_span_attribute(span, SpanAttributes.LLM_TEMPERATURE, kwargs.get("temperature"))
set_span_attribute(span, SpanAttributes.LLM_TOP_P, kwargs.get("top_p"))
set_span_attribute(span, SpanAttributes.LLM_REQUEST_TEMPERATURE, kwargs.get("temperature"))
set_span_attribute(span, SpanAttributes.LLM_REQUEST_TOP_P, kwargs.get("top_p"))
set_span_attribute(
span, SpanAttributes.LLM_FREQUENCY_PENALTY, kwargs.get("frequency_penalty")
)
Expand Down Expand Up @@ -394,7 +394,7 @@ def _calculate_metrics_attributes(response):
if not isinstance(response, dict):
response = response.__dict__
return {
"llm.response.model": response.get("model"),
"gen_ai.response.model": response.get("model"),
}


Expand All @@ -420,7 +420,7 @@ def _wrap(
name,
kind=SpanKind.CLIENT,
attributes={
SpanAttributes.LLM_VENDOR: "Anthropic",
SpanAttributes.LLM_SYSTEM: "Anthropic",
SpanAttributes.LLM_REQUEST_TYPE: LLMRequestTypeValues.COMPLETION.value,
},
)
Expand Down Expand Up @@ -516,7 +516,7 @@ async def _awrap(
name,
kind=SpanKind.CLIENT,
attributes={
SpanAttributes.LLM_VENDOR: "Anthropic",
SpanAttributes.LLM_SYSTEM: "Anthropic",
SpanAttributes.LLM_REQUEST_TYPE: LLMRequestTypeValues.COMPLETION.value,
},
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,7 @@ def build_from_streaming_response(
_process_response_item(item, complete_response)

metric_attributes = {
"llm.response.model": complete_response.get("model"),
"gen_ai.response.model": complete_response.get("model"),
}

if duration_histogram:
Expand Down Expand Up @@ -205,7 +205,7 @@ async def abuild_from_streaming_response(
_process_response_item(item, complete_response)

metric_attributes = {
"llm.response.model": complete_response.get("model"),
"gen_ai.response.model": complete_response.get("model"),
}

if duration_histogram:
Expand Down
8 changes: 4 additions & 4 deletions packages/opentelemetry-instrumentation-anthropic/poetry.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ python = ">=3.9,<4"
opentelemetry-api = "^1.24.0"
opentelemetry-instrumentation = "^0.45b0"
opentelemetry-semantic-conventions = "^0.45b0"
opentelemetry-semantic-conventions-ai = "0.1.1"
opentelemetry-semantic-conventions-ai = "0.2.0"

[tool.poetry.group.dev.dependencies]
autopep8 = "2.1.0"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -26,10 +26,10 @@ def test_anthropic_completion(exporter, reader):

anthropic_span = spans[0]
assert (
anthropic_span.attributes["llm.prompts.0.user"]
anthropic_span.attributes["gen_ai.prompt.0.user"]
== f"{HUMAN_PROMPT}\nHello world\n{AI_PROMPT}"
)
assert anthropic_span.attributes.get("llm.completions.0.content")
assert anthropic_span.attributes.get("gen_ai.completion.0.content")

metrics_data = reader.get_metrics_data()
resource_metrics = metrics_data.resource_metrics
Expand All @@ -51,7 +51,7 @@ def test_anthropic_completion(exporter, reader):
"prompt",
]
assert (
data_point.attributes["llm.response.model"]
data_point.attributes["gen_ai.response.model"]
== "claude-instant-1.2"
)
assert data_point.value > 0
Expand All @@ -61,7 +61,7 @@ def test_anthropic_completion(exporter, reader):
for data_point in metric.data.data_points:
assert data_point.value >= 1
assert (
data_point.attributes["llm.response.model"]
data_point.attributes["gen_ai.response.model"]
== "claude-instant-1.2"
)

Expand All @@ -74,7 +74,7 @@ def test_anthropic_completion(exporter, reader):
data_point.sum > 0 for data_point in metric.data.data_points
)
assert all(
data_point.attributes.get("llm.response.model")
data_point.attributes.get("gen_ai.response.model")
== "claude-instant-1.2"
or data_point.attributes.get("error.type") == "TypeError"
for data_point in metric.data.data_points
Expand Down Expand Up @@ -117,18 +117,18 @@ def test_anthropic_message_create(exporter, reader):

anthropic_span = spans[0]
assert (
anthropic_span.attributes["llm.prompts.0.content"]
anthropic_span.attributes["gen_ai.prompt.0.content"]
== "Tell me a joke about OpenTelemetry"
)
assert (anthropic_span.attributes["llm.prompts.0.role"]) == "user"
assert (anthropic_span.attributes["gen_ai.prompt.0.role"]) == "user"
assert (
anthropic_span.attributes.get("llm.completions.0.content")
anthropic_span.attributes.get("gen_ai.completion.0.content")
== response.content[0].text
)
assert anthropic_span.attributes["llm.usage.prompt_tokens"] == 8
assert anthropic_span.attributes["gen_ai.usage.prompt_tokens"] == 8
assert (
anthropic_span.attributes["llm.usage.completion_tokens"]
+ anthropic_span.attributes["llm.usage.prompt_tokens"]
anthropic_span.attributes["gen_ai.usage.completion_tokens"]
+ anthropic_span.attributes["gen_ai.usage.prompt_tokens"]
== anthropic_span.attributes["llm.usage.total_tokens"]
)

Expand All @@ -152,7 +152,7 @@ def test_anthropic_message_create(exporter, reader):
"prompt",
]
assert (
data_point.attributes["llm.response.model"]
data_point.attributes["gen_ai.response.model"]
== "claude-3-opus-20240229"
)
assert data_point.value > 0
Expand All @@ -162,7 +162,7 @@ def test_anthropic_message_create(exporter, reader):
for data_point in metric.data.data_points:
assert data_point.value >= 1
assert (
data_point.attributes["llm.response.model"]
data_point.attributes["gen_ai.response.model"]
== "claude-3-opus-20240229"
)

Expand All @@ -175,7 +175,7 @@ def test_anthropic_message_create(exporter, reader):
data_point.sum > 0 for data_point in metric.data.data_points
)
assert all(
data_point.attributes.get("llm.response.model")
data_point.attributes.get("gen_ai.response.model")
== "claude-3-opus-20240229"
or data_point.attributes.get("error.type") == "TypeError"
for data_point in metric.data.data_points
Expand Down Expand Up @@ -225,7 +225,7 @@ def test_anthropic_multi_modal(exporter):
"anthropic.completion",
]
anthropic_span = spans[0]
assert anthropic_span.attributes["llm.prompts.0.content"] == json.dumps(
assert anthropic_span.attributes["gen_ai.prompt.0.content"] == json.dumps(
[
{"type": "text", "text": "What do you see?"},
{
Expand All @@ -238,15 +238,15 @@ def test_anthropic_multi_modal(exporter):
},
]
)
assert (anthropic_span.attributes["llm.prompts.0.role"]) == "user"
assert (anthropic_span.attributes["gen_ai.prompt.0.role"]) == "user"
assert (
anthropic_span.attributes.get("llm.completions.0.content")
anthropic_span.attributes.get("gen_ai.completion.0.content")
== response.content[0].text
)
assert anthropic_span.attributes["llm.usage.prompt_tokens"] == 1381
assert anthropic_span.attributes["gen_ai.usage.prompt_tokens"] == 1381
assert (
anthropic_span.attributes["llm.usage.completion_tokens"]
+ anthropic_span.attributes["llm.usage.prompt_tokens"]
anthropic_span.attributes["gen_ai.usage.completion_tokens"]
+ anthropic_span.attributes["gen_ai.usage.prompt_tokens"]
== anthropic_span.attributes["llm.usage.total_tokens"]
)

Expand Down Expand Up @@ -277,17 +277,17 @@ def test_anthropic_message_streaming(exporter, reader):
]
anthropic_span = spans[0]
assert (
anthropic_span.attributes["llm.prompts.0.content"]
anthropic_span.attributes["gen_ai.prompt.0.content"]
== "Tell me a joke about OpenTelemetry"
)
assert (anthropic_span.attributes["llm.prompts.0.role"]) == "user"
assert (anthropic_span.attributes["gen_ai.prompt.0.role"]) == "user"
assert (
anthropic_span.attributes.get("llm.completions.0.content") == response_content
anthropic_span.attributes.get("gen_ai.completion.0.content") == response_content
)
assert anthropic_span.attributes["llm.usage.prompt_tokens"] == 8
assert anthropic_span.attributes["gen_ai.usage.prompt_tokens"] == 8
assert (
anthropic_span.attributes["llm.usage.completion_tokens"]
+ anthropic_span.attributes["llm.usage.prompt_tokens"]
anthropic_span.attributes["gen_ai.usage.completion_tokens"]
+ anthropic_span.attributes["gen_ai.usage.prompt_tokens"]
== anthropic_span.attributes["llm.usage.total_tokens"]
)

Expand All @@ -311,7 +311,7 @@ def test_anthropic_message_streaming(exporter, reader):
"prompt",
]
assert (
data_point.attributes["llm.response.model"]
data_point.attributes["gen_ai.response.model"]
== "claude-3-haiku-20240307"
)
assert data_point.value > 0
Expand All @@ -321,7 +321,7 @@ def test_anthropic_message_streaming(exporter, reader):
for data_point in metric.data.data_points:
assert data_point.value >= 1
assert (
data_point.attributes["llm.response.model"]
data_point.attributes["gen_ai.response.model"]
== "claude-3-haiku-20240307"
)

Expand All @@ -334,7 +334,7 @@ def test_anthropic_message_streaming(exporter, reader):
data_point.sum > 0 for data_point in metric.data.data_points
)
assert all(
data_point.attributes.get("llm.response.model")
data_point.attributes.get("gen_ai.response.model")
== "claude-3-haiku-20240307"
or data_point.attributes.get("error.type") == "TypeError"
for data_point in metric.data.data_points
Expand Down Expand Up @@ -372,18 +372,18 @@ async def test_async_anthropic_message_create(exporter, reader):
]
anthropic_span = spans[0]
assert (
anthropic_span.attributes["llm.prompts.0.content"]
anthropic_span.attributes["gen_ai.prompt.0.content"]
== "Tell me a joke about OpenTelemetry"
)
assert (anthropic_span.attributes["llm.prompts.0.role"]) == "user"
assert (anthropic_span.attributes["gen_ai.prompt.0.role"]) == "user"
assert (
anthropic_span.attributes.get("llm.completions.0.content")
anthropic_span.attributes.get("gen_ai.completion.0.content")
== response.content[0].text
)
assert anthropic_span.attributes["llm.usage.prompt_tokens"] == 8
assert anthropic_span.attributes["gen_ai.usage.prompt_tokens"] == 8
assert (
anthropic_span.attributes["llm.usage.completion_tokens"]
+ anthropic_span.attributes["llm.usage.prompt_tokens"]
anthropic_span.attributes["gen_ai.usage.completion_tokens"]
+ anthropic_span.attributes["gen_ai.usage.prompt_tokens"]
== anthropic_span.attributes["llm.usage.total_tokens"]
)

Expand All @@ -407,7 +407,7 @@ async def test_async_anthropic_message_create(exporter, reader):
"prompt",
]
assert (
data_point.attributes["llm.response.model"]
data_point.attributes["gen_ai.response.model"]
== "claude-3-opus-20240229"
)
assert data_point.value > 0
Expand All @@ -417,7 +417,7 @@ async def test_async_anthropic_message_create(exporter, reader):
for data_point in metric.data.data_points:
assert data_point.value >= 1
assert (
data_point.attributes["llm.response.model"]
data_point.attributes["gen_ai.response.model"]
== "claude-3-opus-20240229"
)

Expand All @@ -430,7 +430,7 @@ async def test_async_anthropic_message_create(exporter, reader):
data_point.sum > 0 for data_point in metric.data.data_points
)
assert all(
data_point.attributes.get("llm.response.model")
data_point.attributes.get("gen_ai.response.model")
== "claude-3-opus-20240229"
or data_point.attributes.get("error.type") == "TypeError"
for data_point in metric.data.data_points
Expand Down Expand Up @@ -474,17 +474,17 @@ async def test_async_anthropic_message_streaming(exporter, reader):
]
anthropic_span = spans[0]
assert (
anthropic_span.attributes["llm.prompts.0.content"]
anthropic_span.attributes["gen_ai.prompt.0.content"]
== "Tell me a joke about OpenTelemetry"
)
assert (anthropic_span.attributes["llm.prompts.0.role"]) == "user"
assert (anthropic_span.attributes["gen_ai.prompt.0.role"]) == "user"
assert (
anthropic_span.attributes.get("llm.completions.0.content") == response_content
anthropic_span.attributes.get("gen_ai.completion.0.content") == response_content
)
assert anthropic_span.attributes["llm.usage.prompt_tokens"] == 8
assert anthropic_span.attributes["gen_ai.usage.prompt_tokens"] == 8
assert (
anthropic_span.attributes["llm.usage.completion_tokens"]
+ anthropic_span.attributes["llm.usage.prompt_tokens"]
anthropic_span.attributes["gen_ai.usage.completion_tokens"]
+ anthropic_span.attributes["gen_ai.usage.prompt_tokens"]
== anthropic_span.attributes["llm.usage.total_tokens"]
)

Expand All @@ -508,7 +508,7 @@ async def test_async_anthropic_message_streaming(exporter, reader):
"prompt",
]
assert (
data_point.attributes["llm.response.model"]
data_point.attributes["gen_ai.response.model"]
== "claude-3-haiku-20240307"
)
assert data_point.value > 0
Expand All @@ -518,7 +518,7 @@ async def test_async_anthropic_message_streaming(exporter, reader):
for data_point in metric.data.data_points:
assert data_point.value >= 1
assert (
data_point.attributes["llm.response.model"]
data_point.attributes["gen_ai.response.model"]
== "claude-3-haiku-20240307"
)

Expand All @@ -531,7 +531,7 @@ async def test_async_anthropic_message_streaming(exporter, reader):
data_point.sum > 0 for data_point in metric.data.data_points
)
assert all(
data_point.attributes.get("llm.response.model")
data_point.attributes.get("gen_ai.response.model")
== "claude-3-haiku-20240307"
or data_point.attributes.get("error.type") == "TypeError"
for data_point in metric.data.data_points
Expand Down
Loading