Skip to content
#

ollama

Here are 185 public repositories matching this topic...

LangChain4j is an open-source Java library that simplifies the integration of LLMs into Java applications through a unified API, providing access to popular LLMs and vector databases. It makes implementing RAG, tool calling (including support for MCP), and agents easy. LangChain4j integrates seamlessly with various enterprise Java frameworks.

  • Updated Dec 30, 2025
  • Java

基于 Java Web 项目的 SpringBoot 框架初始化模板,适配最新版本Spring AI,该模板整合了常用的框架(Mybatis-Plus、ShardingSphere、Redis、RabbitMQ、Elasticsearch、SaToken、OSS、Caffeine以及MongoDB等),广泛支持JDK11和JDK17,部分版本兼容JDK8,同时该模板适用于前后端分离项目启动开发,保证大家在此基础上能够快速开发自己的项目,同时也适合入门学习,本项目会由作者持续更新。

  • Updated Nov 25, 2025
  • Java

一款JavaSDK用于快速接入AI大模型应用,整合多平台大模型,如OpenAi、智谱Zhipu(ChatGLM)、深度求索DeepSeek、月之暗面Moonshot(Kimi)、腾讯混元Hunyuan、零一万物(01)等等,提供统一的输入输出(对齐OpenAi)消除差异化,优化函数调用(Tool Call),优化RAG调用、支持向量数据库(Pinecone)、内置联网增强,并且支持JDK1.8,为用户提供快速整合AI的能力。

  • Updated Oct 4, 2025
  • Java

Free APaaS no-code platform combined with AI applications for rapid business app development. 免费APaaS零代码平台结合AI应用,助力企业快速搭建个性化业务应用,无需编码。敲敲云提供完整的应用搭建、表单、流程和仪表盘引擎,满足企业日常需求。

  • Updated Dec 24, 2025
  • Java
OdinRunes

Odin Runes, a java-based GPT client, facilitates interaction with your preferred GPT model right through your favorite text editor. There is more: It also facilitates prompt-engineering by extracting context from diverse sources using technologies such as OCR, enhancing overall productivity and saving costs.

  • Updated Jul 26, 2024
  • Java

Java 23, SpringBoot 3.4.1 Examples using Deep Learning 4 Java & LangChain4J for Generative AI using ChatGPT LLM, RAG and other open source LLMs. Sentiment Analysis, Application Context based ChatBots. Custom Data Handling. LLMs - GPT 3.5 / 4o, Gemini Pro 1.5, Claude 3, Llama 3.1, Phi-3, Gemma 2, Falcon 3, Qwen 2.5, Mistral Nemo, Wizard Math

  • Updated Jan 7, 2025
  • Java

A project to show howto use SpringAI with OpenAI to chat with the documents in a library. Documents are stored in a normal/vector database. The AI is used to create embeddings from documents that are stored in the vector database. The vector database is used to query for the nearest document. That document is used by the AI to generate the answer.

  • Updated Dec 28, 2025
  • Java

Improve this page

Add a description, image, and links to the ollama topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the ollama topic, visit your repo's landing page and select "manage topics."

Learn more