You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
A Reinforcement Learning MVP (Minimum Viable Product) for Condition-Based Maintenance (CBM) using industrial equipment temperature sensor data. This project implements a sophisticated QR-DQN (Quantile Regression Deep Q-Network) agent to learn optimal maintenance policies balancing risk mitigation and cost minimization.
Multi-Equipment CBM (Condition-Based Maintenance) optimization using Deep Q-Learning with cost leveling and scenario comparison. Advanced RL system with QR-DQN, N-step learning, and parallel environments for HVAC equipment predictive maintenance.
Multi-Equipment CBM system using QR-DQN with advanced probability distribution analysis. Coordinated maintenance decision-making for 4 industrial equipment units with realistic anomaly rates (1.9-2.2%), comprehensive risk analysis (VaR/CVaR), and 51-quantile distribution visualization.
Aging-Aware Condition-Based Maintenance System using Deep Q-Learning. This project implements a Condition-Based Maintenance (CBM) system that considers equipment aging (deterioration) using Deep Q-Learning (DQN).
A comprehensive reinforcement learning system for pump equipment condition-based maintenance using DQN (Deep Q-Network) with quantile regression and aging factor integration.