Skip to content

tonumayworkspace-creator/FinGuard

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FinGuard --- Credit Card Fraud Detection System

License: MIT Language Framework Modeling

FinGuard is an end-to-end fraud detection system built using Flask, scikit-learn, SHAP explainability, and Plotly visual analytics. This project demonstrates real-world AI engineering skills with clean UI, API documentation, and reproducible ML workflows.


Quick Demo

Run the app locally and open:

http://127.0.0.1:5000/

What This Project Contains

  • Flask application (app/)
  • SHAP explainability UI
  • Plotly ROC visualization
  • Swagger API documentation (/docs)
  • Screenshot assets (docs/images/)
  • Clean project structure suitable for recruiters

Tech Stack

  • Python 3.13\
  • Flask\
  • scikit-learn\
  • SHAP\
  • Plotly\
  • HTML/CSS/JS (modern UI)

How It Works

  1. Load dataset (creditcard-database.csv)
  2. Train Logistic Regression baseline model
  3. Save model + ROC metrics + SHAP explanations
  4. Provide prediction form + API + visualizations

Run Locally

git clone https://github.com/tonumayworkspace-creator/FinGuard.git
cd FinGuard
python -m venv venv
venv\Scripts\activate
pip install -r requirements.txt
pip install shap plotly matplotlib
python app\app.py

API Documentation (Swagger)

http://127.0.0.1:5000/docs

Example Request:

{
  "features": {
    "Time": 34500,
    "Amount": 120.5,
    "V1": -1.23
  }
}

Screenshots

(Add matching images in docs/images/)

Home
Preview
Train
Predict


Author

Tonumay Bhattacharya
Data Science & AI Engineering Enthusiast

GitHub: https://github.com/tonumayworkspace-creator\ LinkedIn: (add link here)


License

MIT License

About

FinGuard — credit-card fraud detection (Flask + scikit-learn)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published