FinGuard is an end-to-end fraud detection system built using Flask, scikit-learn, SHAP explainability, and Plotly visual analytics. This project demonstrates real-world AI engineering skills with clean UI, API documentation, and reproducible ML workflows.
Run the app locally and open:
http://127.0.0.1:5000/
- Flask application (
app/) - SHAP explainability UI
- Plotly ROC visualization
- Swagger API documentation (
/docs) - Screenshot assets (
docs/images/) - Clean project structure suitable for recruiters
- Python 3.13\
- Flask\
- scikit-learn\
- SHAP\
- Plotly\
- HTML/CSS/JS (modern UI)
- Load dataset (
creditcard-database.csv) - Train Logistic Regression baseline model
- Save model + ROC metrics + SHAP explanations
- Provide prediction form + API + visualizations
git clone https://github.com/tonumayworkspace-creator/FinGuard.git
cd FinGuard
python -m venv venv
venv\Scripts\activate
pip install -r requirements.txt
pip install shap plotly matplotlib
python app\app.pyhttp://127.0.0.1:5000/docs
Example Request:
{
"features": {
"Time": 34500,
"Amount": 120.5,
"V1": -1.23
}
}(Add matching images in docs/images/)
Tonumay Bhattacharya
Data Science & AI Engineering Enthusiast
GitHub: https://github.com/tonumayworkspace-creator\ LinkedIn: (add link here)
MIT License



