-
You need to first download Argoverse 2 motion forecasting dataset.
-
You need to modify the data root in
EQNet/env_config.yml:machines/default/argoverse_v2_dataroot
to the correct location. -
The dataset folder structure example:
/mnt/data/argoverse2/ ├── test │ ├── processed │ └── raw ├── train │ ├── processed │ └── raw └── val ├── processed │ ├── 6a24bd-1ad8-44c7-9a0e-5e93bb41d5ae.pkl | ... └── raw ├── 6a24bd-1ad8-44c7-9a0e-5e93bb41d5ae ...
The
processed
folder contains the cache data, which is generated from the raw data. It will be automatically generated on the initial run. Theraw
folder contains the original data.
git clone <this-repo>
# we use conda to manage system packages
# to compile cuda extensions: gcc=9.5.0 gxx=9.5.0
# evalai dependencies: lxml
# av2-api dependencies: rust
conda create --name py310rust python=3.10 gcc=9.5.0 gxx=9.5.0 lxml rust virtualenv -c conda-forge
conda activate py310rust
pip install virtualenv # we use virtualenv to manage python packages
cd <repo_root>
python3 -m venv .venv # to be able to navigate the library code in the explorer tree, create the .venv folder locally
source .venv/bin/activate
pip install -U setuptools pip
<install-pytorch-via-pip-with-proper-version-of-cuda> # accord with /usr/local/cuda version
<install-pytorch-geometric-via-pip-with-proper-version-of-cuda> # https://pytorch-geometric.readthedocs.io/en/1.6.3/notes/installation.html
pip install https://github.com/argoverse/av2-api.git # mkdir .venv/src ; cd .venv/src; git clone git@github.com:argoverse/av2-api.git; pip install -e av2-api; cd ../..
pip install https://github.com/JonathonLuiten/TrackEval.git # mkdir .venv/src ; cd .venv/src; git clone git@github.com:JonathonLuiten/TrackEval.git; pip install -e TrackEval; cd ../..
pip install beautifulsoup4==4.7.1 beautifultable==0.7.0 "boto3>=1.9.88" docker==3.6.0 validators==0.12.6 termcolor==1.1.0 "tqdm>=4.49.0" # manually manage dependencies for evalai to avoid conflicts
pip install evalai --no-deps
pip install lightning einops torchscale huggingface_hub tensorboard==2.12.1
pip install GitPython json5 shapely descartes imageio omegaconf colour pyyaml docstring_parser typing_inspect ipdb matplotlib click
pip install "numpy<2.0"
conda activate py310rust
source .venv/bin/activate
bash EQNet/train.sh -m
TBA
TBA
- checkout
visualize.ipynb
.
TBA