Description
Hi,
I want to use the prebuilt conv ODE blocks in a the network. However, there always shows below error:
Traceback (most recent call last):
File "C:\Program Files\JetBrains\PyCharm 2021.1.1\plugins\python\helpers\pydev_pydevd_bundle\pydevd_exec2.py", line 3, in Exec
exec(exp, global_vars, local_vars)
File "", line 1, in
File "C:\Users\ZhengQing\anaconda3\envs\tensorflow-gpu_115\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 869, in call
outputs = self._symbolic_call(inputs)
File "C:\Users\ZhengQing\anaconda3\envs\tensorflow-gpu_115\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 2158, in _symbolic_call
output_shapes = self.compute_output_shape(input_shapes)
File "C:\Users\ZhengQing\anaconda3\envs\tensorflow-gpu_115\lib\site-packages\tensorflow_core\python\keras\engine\network.py", line 699, in compute_output_shape
return super(Network, self).compute_output_shape(input_shape)
File "C:\Users\ZhengQing\anaconda3\envs\tensorflow-gpu_115\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 646, in compute_output_shape
raise NotImplementedError
NotImplementedError
And Here is my code:
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, Dense, Flatten, Input, MaxPooling2D, Layer, Lambda, Conv2DTranspose, BatchNormalization, AveragePooling2D, UpSampling2D, concatenate
from tfdiffeq.models import Conv2dODENet
def test_model(input_layer):
x = Conv2D(8, (3, 3), activation="relu", kernel_initializer='he_normal', padding="same")(input_layer)
x = Conv2D(8, (3, 3), activation="relu", kernel_initializer='he_normal', padding="same")(x)
output_layer = Conv2dODENet(num_filters = 2, augment_dim=0, time_dependent=False)(x)
model = Model(inputs=input_layer, outputs=output_layer)
model.compile(...)
return model
input_layer = Input(shape=(160, 208, 4))
model = test_model(input_layer)
Could you kindly help me to check whether my implementation is correct? Many thanks in advance!
Best,
ZQ