Skip to content

tinker495/Tunelex

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tunelex

Tuneless optimizer for Optax and JAX.

This repository explores reimplementing the prodigy-plus-schedule-free optimizer within Optax.

Experiment Results

MNIST

MNIST metrics

rank optimizer lr batch_size test_batch_size epochs seed_count accuracy (+/-) avg_loss (+/-)
1 schedule_free_prodigy None 64 1000 14 3 99.2567 +/- 0.0603 0.0322 +/- 0.0012
2 adopt 0.001 64 1000 14 3 99.2133 +/- 0.0702 0.0303 +/- 0.0033
3 schedule_free_adamw 0.001 64 1000 14 3 99.2067 +/- 0.0208 0.0333 +/- 0.0004
4 adamw 0.001 64 1000 14 3 99.1800 +/- 0.0458 0.0345 +/- 0.0012
5 prodigy None 64 1000 14 3 99.1333 +/- 0.0737 0.0355 +/- 0.0017

KMNIST

KMNIST metrics

rank optimizer lr batch_size test_batch_size epochs seed_count accuracy (+/-) avg_loss (+/-)
1 schedule_free_adamw 0.001 64 1000 14 3 97.7400 +/- 0.0854 0.1352 +/- 0.0067
2 schedule_free_prodigy None 64 1000 14 3 97.1433 +/- 0.1106 0.1573 +/- 0.0229
3 prodigy None 64 1000 14 3 96.9033 +/- 0.2146 0.1511 +/- 0.0118
4 adopt 0.001 64 1000 14 3 96.8733 +/- 0.5387 0.1534 +/- 0.0209
5 adamw 0.001 64 1000 14 3 96.8133 +/- 0.1401 0.1613 +/- 0.0189

Schedule-free Prodigy is the headline result: the zero extra-parameter variant tops the MNIST benchmark and still holds second place on KMNIST, trailing only schedule-free AdamW while matching its simplicity. The schedule-free transform keeps the optimizer competitive without tuning new degrees of freedom.

To regenerate the plots and tables use python example/mnist/plot_metrics.py for MNIST and python example/kmnist/plot_metrics.py for KMNIST. The scripts read logged metrics, render plots under logs/, and persist the tabular summaries alongside the images in imgs/.

About

tuneless optimizer for optax & jax!

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published