Skip to content

Jupyter Notebook

tincotema edited this page Dec 6, 2023 · 4 revisions

This Package can be used also in jupyter notebook.

First you have to import the basic functions initialize, simulate, load_mcvariables:

from mcpw.jupyter_functions import initialize, simulate, load_mcvariables

Next you have to initialize the local variables:

var = initialize(instrument='instrument.instr'[, working_dir='relative_or_absolute_path', mcstas='mcstas_path_or_link', output_dir='simulation_results', component_dir='relative_or_absolute_path', mpi=#cores])

The default for mcstas is 'mcstas' You will get a printout for your mcvariable class. copy the section into the next cell and execute it.

Now var and mcvar should be initialized and you can run a simulation with:

mcvar, res = simulate(var, mcvar, sim='bla'[,var_list=[], var_list_csv=PATH, recompile=False, verbose=False])

This function returns the used mcvariables and a list of result directory where the simulation results are saved. If the command is called a second time with the same value for dn, the mcvariables and result directorys for this dn will be loaded end returned. The var_list parameter expects an array in the form described above.

If you want to use the default mcstas plotter, you can import it:

from mcpw.mcstas_wrapper import mcplot
mcplot(var,mcvar)

###Functions explicit for jupyter notebook: Function returning mcvariables from simulation:

load_mcvariables(var, sim='')
Clone this wiki locally