Skip to content

Commit

Permalink
Added labeled cluster euclidean segmentation for use in the people stack
Browse files Browse the repository at this point in the history
git-svn-id: svn+ssh://svn.pointclouds.org/pcl/trunk@2993 a9d63959-f2ad-4865-b262-bf0e56cfafb6
  • Loading branch information
KoenBuys committed Oct 31, 2011
1 parent 6d390be commit 0257991
Show file tree
Hide file tree
Showing 5 changed files with 330 additions and 2 deletions.
2 changes: 2 additions & 0 deletions segmentation/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,14 @@ if(build)
)

set(incs include/pcl/${SUBSYS_NAME}/extract_clusters.h
include/pcl/${SUBSYS_NAME}/extract_labeled_clusters.h
include/pcl/${SUBSYS_NAME}/extract_polygonal_prism_data.h
include/pcl/${SUBSYS_NAME}/sac_segmentation.h
include/pcl/${SUBSYS_NAME}/segment_differences.h
)

set(impl_incs include/pcl/${SUBSYS_NAME}/impl/extract_clusters.hpp
include/pcl/${SUBSYS_NAME}/impl/extract_labeled_clusters.hpp
include/pcl/${SUBSYS_NAME}/impl/extract_polygonal_prism_data.hpp
include/pcl/${SUBSYS_NAME}/impl/sac_segmentation.hpp
include/pcl/${SUBSYS_NAME}/impl/segment_differences.hpp
Expand Down
4 changes: 2 additions & 2 deletions segmentation/include/pcl/segmentation/extract_clusters.h
Original file line number Diff line number Diff line change
Expand Up @@ -289,8 +289,8 @@ namespace pcl
typedef typename PointCloud::Ptr PointCloudPtr;
typedef typename PointCloud::ConstPtr PointCloudConstPtr;

typedef typename pcl::search::Search<PointT> KdTree;
typedef typename pcl::search::Search<PointT>::Ptr KdTreePtr;
typedef typename pcl::search::Search<PointT> KdTree;
typedef typename pcl::search::Search<PointT>::Ptr KdTreePtr;

typedef PointIndices::Ptr PointIndicesPtr;
typedef PointIndices::ConstPtr PointIndicesConstPtr;
Expand Down
169 changes: 169 additions & 0 deletions segmentation/include/pcl/segmentation/extract_labeled_clusters.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/

#ifndef PCL_EXTRACT_LABELED_CLUSTERS_H_
#define PCL_EXTRACT_LABELED_CLUSTERS_H_

#include <pcl/pcl_base.h>
#include "pcl/search/pcl_search.h"

namespace pcl
{
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Decompose a region of space into clusters based on the Euclidean distance between points
* \param cloud the point cloud message
* \param tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
* \note the tree has to be created as a spatial locator on \a cloud
* \param tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
* \param clusters the resultant clusters containing point indices (as a vector of PointIndices)
* \param min_pts_per_cluster minimum number of points that a cluster may contain (default: 1)
* \param max_pts_per_cluster maximum number of points that a cluster may contain (default: max int)
* \ingroup segmentation
*/
template <typename PointT> void extractLabeledEuclideanClusters (const PointCloud<PointT> &cloud, const boost::shared_ptr<search::Search<PointT> > &tree, float tolerance, std::vector<std::vector<PointIndices> > &labeled_clusters, unsigned int min_pts_per_cluster = 1, unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) (), unsigned int max_label = (std::numeric_limits<int>::max));

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief @b LabeledEuclideanClusterExtraction represents a segmentation class for cluster extraction in an Euclidean sense, with label info.
* \author Koen Buys
* \ingroup segmentation
*/
template <typename PointT>
class LabeledEuclideanClusterExtraction: public PCLBase<PointT>
{
typedef PCLBase<PointT> BasePCLBase;

public:
typedef pcl::PointCloud<PointT> PointCloud;
typedef typename PointCloud::Ptr PointCloudPtr;
typedef typename PointCloud::ConstPtr PointCloudConstPtr;

typedef typename pcl::search::Search<PointT> KdTree;
typedef typename pcl::search::Search<PointT>::Ptr KdTreePtr;

typedef PointIndices::Ptr PointIndicesPtr;
typedef PointIndices::ConstPtr PointIndicesConstPtr;

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Empty constructor. */
LabeledEuclideanClusterExtraction () : tree_ (), min_pts_per_cluster_ (1),
max_pts_per_cluster_ (std::numeric_limits<int>::max ()),
max_label_ (std::numeric_limits<int>::max ())
{};

/** \brief Provide a pointer to the search object.
* \param tree a pointer to the spatial search object.
*/
inline void setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }

/** \brief Get a pointer to the search method used. */
inline KdTreePtr getSearchMethod () { return (tree_); }

/** \brief Set the spatial cluster tolerance as a measure in the L2 Euclidean space
* \param tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space
*/
inline void setClusterTolerance (double tolerance) { cluster_tolerance_ = tolerance; }

/** \brief Get the spatial cluster tolerance as a measure in the L2 Euclidean space. */
inline double getClusterTolerance () { return (cluster_tolerance_); }

/** \brief Set the minimum number of points that a cluster needs to contain in order to be considered valid.
* \param min_cluster_size the minimum cluster size
*/
inline void setMinClusterSize (int min_cluster_size) { min_pts_per_cluster_ = min_cluster_size; }

/** \brief Get the minimum number of points that a cluster needs to contain in order to be considered valid. */
inline int getMinClusterSize () { return (min_pts_per_cluster_); }

/** \brief Set the maximum number of points that a cluster needs to contain in order to be considered valid.
* \param max_cluster_size the maximum cluster size
*/
inline void setMaxClusterSize (int max_cluster_size) { max_pts_per_cluster_ = max_cluster_size; }

/** \brief Get the maximum number of points that a cluster needs to contain in order to be considered valid. */
inline int getMaxClusterSize () { return (max_pts_per_cluster_); }

/** \brief Set the maximum number of labels in the cloud.
* \param max_label the maximum
*/
inline void setMaxLabels (unsigned int max_label) { max_label_ = max_label; }

/** \brief Get the maximum number of labels */
inline unsigned int getMaxLabels () { return (max_label_); }

/** \brief Cluster extraction in a PointCloud given by <setInputCloud (), setIndices ()>
* \param clusters the resultant point clusters
*/
void extract (std::vector<std::vector<PointIndices> > &labeled_clusters);

protected:
// Members derived from the base class
using BasePCLBase::input_;
using BasePCLBase::indices_;
using BasePCLBase::initCompute;
using BasePCLBase::deinitCompute;

/** \brief A pointer to the spatial search object. */
KdTreePtr tree_;

/** \brief The spatial cluster tolerance as a measure in the L2 Euclidean space. */
double cluster_tolerance_;

/** \brief The minimum number of points that a cluster needs to contain in order to be considered valid (default = 1). */
int min_pts_per_cluster_;

/** \brief The maximum number of points that a cluster needs to contain in order to be considered valid (default = MAXINT). */
int max_pts_per_cluster_;

/** \brief The maximum number of labels we can find in this pointcloud (default = MAXINT)*/
unsigned int max_label_;

/** \brief Class getName method. */
virtual std::string getClassName () const { return ("LabeledEuclideanClusterExtraction"); }

};

/** \brief Sort clusters method (for std::sort).
* \ingroup segmentation
*/
inline bool
compareLabeledPointClusters (const pcl::PointIndices &a, const pcl::PointIndices &b)
{
return (a.indices.size () < b.indices.size ());
}
}

#endif //#ifndef PCL_EXTRACT_LABELED_CLUSTERS_H_
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
*/

#ifndef PCL_SEGMENTATION_IMPL_EXTRACT_LABELED_CLUSTERS_H_
#define PCL_SEGMENTATION_IMPL_EXTRACT_LABELED_CLUSTERS_H_

#include "pcl/segmentation/extract_labeled_clusters.h"

//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::extractLabeledEuclideanClusters (const PointCloud<PointT> &cloud,
const boost::shared_ptr<search::Search<PointT> > &tree,
float tolerance,
std::vector<std::vector<PointIndices> > &labeled_clusters,
unsigned int min_pts_per_cluster,
unsigned int max_pts_per_cluster,
unsigned int max_label)
{
if (tree->getInputCloud ()->points.size () != cloud.points.size ())
{
PCL_ERROR ("[pcl::extractLabeledEuclideanClusters] Tree built for a different point cloud dataset (%lu) than the input cloud (%lu)!\n", (unsigned long)tree->getInputCloud ()->points.size (), (unsigned long)cloud.points.size ());
return;
}
// Create a bool vector of processed point indices, and initialize it to false
std::vector<bool> processed (cloud.points.size (), false);

std::vector<int> nn_indices;
std::vector<float> nn_distances;

// Process all points in the indices vector
for (size_t i = 0; i < cloud.points.size (); ++i)
{
if (processed[i])
continue;

std::vector<int> seed_queue;
int sq_idx = 0;
seed_queue.push_back (i);

processed[i] = true;

while (sq_idx < (int)seed_queue.size ())
{
// Search for sq_idx
if (!tree->radiusSearch (seed_queue[sq_idx], tolerance, nn_indices, nn_distances))
{
sq_idx++;
continue;
}

for (size_t j = 1; j < nn_indices.size (); ++j) // nn_indices[0] should be sq_idx
{
if (processed[nn_indices[j]]) // Has this point been processed before ?
continue;
if (cloud.points[i].label == cloud.points[nn_indices[j]].label)
{
// Perform a simple Euclidean clustering
seed_queue.push_back (nn_indices[j]);
processed[nn_indices[j]] = true;
}
}

sq_idx++;
}

// If this queue is satisfactory, add to the clusters
if (seed_queue.size () >= min_pts_per_cluster && seed_queue.size () <= max_pts_per_cluster)
{
pcl::PointIndices r;
r.indices.resize (seed_queue.size ());
for (size_t j = 0; j < seed_queue.size (); ++j)
r.indices[j] = seed_queue[j];

std::sort (r.indices.begin (), r.indices.end ());
r.indices.erase (std::unique (r.indices.begin (), r.indices.end ()), r.indices.end ());

r.header = cloud.header;
labeled_clusters[cloud.points[i].label].push_back (r); // We could avoid a copy by working directly in the vector
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////

template <typename PointT> void
pcl::LabeledEuclideanClusterExtraction<PointT>::extract (std::vector<std::vector<PointIndices> > &labeled_clusters)
{
if (!initCompute () ||
(input_ != 0 && input_->points.empty ()) ||
(indices_ != 0 && indices_->empty ()))
{
labeled_clusters.clear ();
return;
}

// Initialize the spatial locator
if (!tree_)
{
if (input_->isOrganized ())
tree_.reset (new pcl::search::OrganizedNeighbor<PointT> ());
else
tree_.reset (new pcl::search::KdTree<PointT> (false));
}

// Send the input dataset to the spatial locator
tree_->setInputCloud (input_);
extractLabeledEuclideanClusters (*input_, tree_, cluster_tolerance_, labeled_clusters, min_pts_per_cluster_, max_pts_per_cluster_, max_label_);

// Sort the clusters based on their size (largest one first)
for(unsigned int i = 0; i < labeled_clusters.size(); i++)
std::sort (labeled_clusters[i].rbegin (), labeled_clusters[i].rend (), comparePointClusters);

deinitCompute ();
}

#define PCL_INSTANTIATE_LabeledEuclideanClusterExtraction(T) template class PCL_EXPORTS pcl::LabeledEuclideanClusterExtraction<T>;
#define PCL_INSTANTIATE_extractLabeledEuclideanClusters(T) template void PCL_EXPORTS pcl::extractLabeledEuclideanClusters<T>(const pcl::PointCloud<T> &, const boost::shared_ptr<pcl::search::Search<T> > &, float , std::vector<std::vector<pcl::PointIndices> > &, unsigned int, unsigned int, unsigned int);

#endif // PCL_EXTRACT_CLUSTERS_IMPL_H_
4 changes: 4 additions & 0 deletions segmentation/src/extract_clusters.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -39,8 +39,12 @@
#include "pcl/point_types.h"
#include "pcl/segmentation/extract_clusters.h"
#include "pcl/segmentation/impl/extract_clusters.hpp"
#include "pcl/segmentation/extract_labeled_clusters.h"
#include "pcl/segmentation/impl/extract_labeled_clusters.hpp"

// Instantiations of specific point types
PCL_INSTANTIATE(EuclideanClusterExtraction, PCL_XYZ_POINT_TYPES);
PCL_INSTANTIATE(extractEuclideanClusters, PCL_XYZ_POINT_TYPES);
PCL_INSTANTIATE(extractEuclideanClusters_indices, PCL_XYZ_POINT_TYPES);
PCL_INSTANTIATE(LabeledEuclideanClusterExtraction, PCL_XYZL_POINT_TYPES);
PCL_INSTANTIATE(extractLabeledEuclideanClusters, PCL_XYZL_POINT_TYPES);

0 comments on commit 0257991

Please sign in to comment.