Skip to content

The fundamentals of Machine Learning and Deep Learning from Scratch and from other libs such as numpy, panda, matplotlib, scipy, scikit-learn, Keras, Tensorflow, Theano, etc

License

Notifications You must be signed in to change notification settings

tien-le-grenoble/uranus-original

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

uranus

The fundamentals of Machine Learning and Deep Learning from Scratch and from other libs such as numpy, panda, matplotlib, scipy, scikit-learn, Keras, Tensorflow, Theano, etc

Table Of Contents

1. Basic Module (Visualizing Data, Linear Algebra, Statistics, Probability, Hypothesis and Inference, Gradient Descent)

  1. Decision Tree (ID3, CART) and Random Forest

  2. Naive Bayes and Linear Regression

  3. Conditional Random Fields (CRF)

  4. AdaBoost

  5. Hidden Markov Model

  6. GMM

  7. SGMM

  8. Support Vector Machine

  9. k-nearest neighbor (KNN)

  10. K-mean

  11. LogisticRegression

  12. Apriori

  13. Expectation–Maximization

  14. PageRank

  15. Deep Neural Network (DNN)

  16. Evaluation Metrics: Receiver Operating Characteristic curve (ROC), Precision and recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE)

References

https://github.com/joelgrus/data-science-from-scratch

https://github.com/justmarkham/scikit-learn-videos

https://github.com/ageron/handson-ml

https://github.com/leriomaggio/deep-learning-keras-tensorflow

About

The fundamentals of Machine Learning and Deep Learning from Scratch and from other libs such as numpy, panda, matplotlib, scipy, scikit-learn, Keras, Tensorflow, Theano, etc

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published