Skip to content

Commit

Permalink
add references for explainability approaches specific to GNNs
Browse files Browse the repository at this point in the history
  • Loading branch information
Alexandre duval committed Sep 14, 2021
1 parent ee21d49 commit c8ed977
Showing 1 changed file with 46 additions and 0 deletions.
46 changes: 46 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,10 @@ Contributed by Jie Zhou, Ganqu Cui, Zhengyan Zhang and Yushi Bai.
<td>&emsp;<a href="#graph-matching">3.17 Graph Matching</a></td>
<td>&ensp;<a href="#computer-network">3.18 Computer Network</a></td>
</tr>
<tr>
<td>&emsp;<a href="#explainability">3.19 Explainability </a></td>
<td></td>
</tr>
</table>

## [Survey papers](#content)
Expand Down Expand Up @@ -1888,3 +1892,45 @@ Contributed by Jie Zhou, Ganqu Cui, Zhengyan Zhang and Yushi Bai.
1. **Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN.** ACM SOSR 2019. [paper](https://arxiv.org/pdf/1901.08113.pdf)

*Krzysztof Rusek, José Suárez-Varela, Albert Mestres, Pere Barlet-Ros, Albert Cabellos-Aparicio.*

### [Explainability](#content)

1. **Explainability Techniques for Graph Convolutional Networks.** ICML 2019. [paper](https://arxiv.org/abs/1905.13686)

*Federico Baldassarre, Hossein Azizpour.*

1. **GNNExplainer: Generating Explanations for Graph Neural Networks.** NeurIPS 2019. [paper](https://arxiv.org/abs/1903.03894)

*Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, Jure Leskovec.*

1. **GCN-LRP Explanation: Exploring Latent Attention of Graph Convolutional Networks.** IJCNN 2020. [paper](https://ieeexplore.ieee.org/document/9207639)

*Jinlong Hu, Tenghui Li, Shoubin Dong.*

1. **Parameterized Explainer for Graph Neural Network.** NeurIPS 2020. [paper](https://arxiv.org/abs/2011.04573)

*Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, Xiang Zhang.*

1. **XGNN: Towards Model-Level Explanations of Graph Neural Networks.** KDD 2020. [paper](https://arxiv.org/abs/2006.02587)

*Hao Yuan, Jiliang Tang, Xia Hu, Shuiwang Ji.*

1. **Contrastive Graph Neural Network Explanation.** ICML 2020. [paper](https://arxiv.org/abs/2010.13663)

*Lukas Faber, Amin K. Moghaddam, Roger Wattenhofer.*

1. **Interpreting Graph Neural Networks for NLP With Differentiable Edge Maskin.** ICLR 2021. [paper](https://arxiv.org/abs/2010.00577)

*Michael Sejr Schlichtkrull, Nicola De Cao, Ivan Titov.*

1. **On Explainability of Graph Neural Networks via Subgraph Explorations.** ICML 2021. [paper](https://arxiv.org/abs/2102.05152)

*Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, Shuiwang Ji.*

1. **Generative Causal Explanations for Graph Neural Networks.** ICML 2021. [paper](https://arxiv.org/abs/2104.06643)

*Wanyu Lin, Hao Lan, Baochun Li.*

1. **GraphSVX: Shapley Value Explanations for Graph Neural Networks.** ECML PKDD 2021. [paper](https://arxiv.org/abs/2104.10482)

*Alexandre Duval, Fragkiskos D. Malliaros.*

0 comments on commit c8ed977

Please sign in to comment.