-
Notifications
You must be signed in to change notification settings - Fork 0
/
vae_hcv.py
577 lines (522 loc) · 26 KB
/
vae_hcv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
import logging
import os
import tensorflow as tf
from scipy.special import gamma
import keras
import numpy
from keras import backend as K, Model
from keras.callbacks import CSVLogger
from keras.callbacks import LambdaCallback,EarlyStopping,ModelCheckpoint
from keras.layers import Input, Dense, BatchNormalization, LeakyReLU, Dropout, Lambda
from keras.models import load_model
from scipy import sparse
import math
import util_loss as ul
log = logging.getLogger(__file__)
class C_VAEArithKeras:
"""
VAE with Arithmetic vector Network class. This class contains the implementation of Variational
Auto-encoder network with Vector Arithmetics.
This model strictly employs 5 unit dimensional space because of the loss function
Parameters
----------
kwargs:
:key `validation_data` : AnnData
must be fed if `use_validation` is true.
:key dropout_rate: float
dropout rate
:key learning_rate: float
learning rate of optimization algorithm
:key model_path: basestring
path to save the model after training
x_dimension: integer
number of gene expression space dimensions.
z_dimension: integer
number of latent space dimensions.
hcv_scale: integer
Weight for the dHSIC kernel in loss function
alpha: float
Weight for the KL Divergence term in loss function.
"""
def __init__(self, x_dimension, z_dimension=100 , **kwargs):
self.x_dim = x_dimension
self.z_dim = z_dimension
self.learning_rate = kwargs.get("learning_rate", 0.001)
self.dropout_rate = kwargs.get("dropout_rate", 0.2)
self.model_to_use = kwargs.get("model_to_use", "./models/")
self.alpha = kwargs.get("alpha", 0.00005)
self.hcv_scale = kwargs.get("hcv_scale", 50)
#self.c_max = kwargs.get("c_max", 20)
#self.c_current = K.variable(value=0.01)
self.x = Input(shape=(x_dimension,), name="input")
self.z = Input(shape=(z_dimension,), name="latent")
self.init_w = keras.initializers.glorot_normal()
self._create_network()
self._loss_function()
self.vae_model.summary()
def _encoder(self):
"""
Constructs the encoder sub-network of VAE. This function implements the
encoder part of Variational Auto-encoder. It will transform primary
data in the `n_vars` dimension-space to the `z_dimension` latent space.
Parameters
----------
No parameters are needed.
Returns
-------
mean: Tensor
A dense layer consists of means of gaussian distributions of latent space dimensions.
log_var: Tensor
A dense layer consists of log transformed variances of gaussian distributions of latent space dimensions.
"""
h = Dense(800, kernel_initializer=self.init_w, use_bias=False)(self.x)
h = BatchNormalization(axis=1)(h)
h = LeakyReLU()(h)
h = Dropout(self.dropout_rate)(h)
h = Dense(800, kernel_initializer=self.init_w, use_bias=False)(h)
h = BatchNormalization(axis=1)(h)
h = LeakyReLU()(h)
h = Dropout(self.dropout_rate)(h)
# h = Dense(512, kernel_initializer=self.init_w, use_bias=False)(h)
# h = BatchNormalization()(h)
# h = LeakyReLU()(h)
# h = Dropout(self.dropout_rate)(h)
# h = Dense(256, kernel_initializer=self.init_w, use_bias=False)(h)
# h = BatchNormalization()(h)
# h = LeakyReLU()(h)
# h = Dropout(self.dropout_rate)(h)
mean = Dense(self.z_dim, kernel_initializer=self.init_w)(h)
log_var = Dense(self.z_dim, kernel_initializer=self.init_w)(h)
z = Lambda(self._sample_z, output_shape=(self.z_dim,), name="Z")([mean, log_var])
self.encoder_model = Model(inputs=self.x, outputs=z, name="encoder")
return mean, log_var
def _decoder(self):
"""
Constructs the decoder sub-network of VAE. This function implements the
decoder part of Variational Auto-encoder. It will transform constructed
latent space to the previous space of data with n_dimensions = n_vars.
Parameters
----------
No parameters are needed.
Returns
-------
h: Tensor
A Tensor for last dense layer with the shape of [n_vars, ] to reconstruct data.
"""
h = Dense(800, kernel_initializer=self.init_w, use_bias=False)(self.z)
h = BatchNormalization(axis=1)(h)
h = LeakyReLU()(h)
h = Dropout(self.dropout_rate)(h)
h = Dense(800, kernel_initializer=self.init_w, use_bias=False)(h)
h = BatchNormalization(axis=1)(h)
h = LeakyReLU()(h)
h = Dropout(self.dropout_rate)(h)
# h = Dense(768, kernel_initializer=self.init_w, use_bias=False)(h)
# h = BatchNormalization()(h)
# h = LeakyReLU()(h)
# h = Dropout(self.dropout_rate)(h)
# h = Dense(1024, kernel_initializer=self.init_w, use_bias=False)(h)
# h = BatchNormalization()(h)
# h = LeakyReLU()(h)
# h = Dropout(self.dropout_rate)(h)
h = Dense(self.x_dim, kernel_initializer=self.init_w, use_bias=True)(h)
self.decoder_model = Model(inputs=self.z, outputs=h, name="decoder")
return h
@staticmethod
def _sample_z(args):
"""
Samples from standard Normal distribution with shape [size, z_dim] and
applies re-parametrization trick. It is actually sampling from latent
space distributions with N(mu, var) computed in `_encoder` function.
Parameters
----------
No parameters are needed.
Returns
-------
The computed Tensor of samples with shape [size, z_dim].
"""
mu, log_var = args
batch_size = K.shape(mu)[0]
z_dim = K.shape(mu)[1]
eps = K.random_normal(shape=[batch_size, z_dim])
return mu + K.exp(log_var / 2) * eps
def _create_network(self):
"""
Constructs the whole VAE network. It is step-by-step constructing the VAE
network. First, It will construct the encoder part and get mu, log_var of
latent space. Second, It will sample from the latent space to feed the
decoder part in next step. Finally, It will reconstruct the data by
constructing decoder part of VAE.
Parameters
----------
No parameters are needed.
Returns
-------
Nothing will be returned.
"""
self.mu, self.log_var = self._encoder()
self.x_hat = self._decoder()
self.vae_model = Model(inputs=self.x, outputs=self.decoder_model(self.encoder_model(self.x)), name="VAE")
def _loss_function(self):
"""
Defines the loss function of VAE network after constructing the whole
network. This will define the KL Divergence and Reconstruction loss for
VAE and also defines the Optimization algorithm for network. The VAE Loss
will be weighted sum of reconstruction loss, KL Divergence loss and dHSIC kernel.
The loss function returns KL Divergence for every latent space dimension and the dHSIC kernel value.
Parameters
----------
No parameters are needed.
Returns
-------
Nothing will be returned.
"""
def vae_loss(y_true, y_pred):
#print(self.c_current)
return K.mean(recon_loss(y_true, y_pred) + self.alpha *kl_loss(y_true, y_pred)) + self.hcv_scale*HSIC(y_true, y_pred)
def HSIC(y_true, y_pred):
def gaussian_sample(mean, var):
sample = K.random_normal(K.shape(mean), mean, K.sqrt(var))
sample.set_shape(mean.get_shape())
return sample
def hsic_objective(z, s):
# use a gaussian RBF for every variable
def K_hcv(x1, x2, gamma=1.):
dist_table = tf.expand_dims(x1, 0) - tf.expand_dims(x2, 1)
return tf.transpose(tf.exp(-gamma * tf.reduce_sum(dist_table **2, axis=2)))
d_z = z.get_shape().as_list()[1]
d_s = s.get_shape().as_list()[1]
gz = 2 * gamma(0.5 * (d_z+1)) / gamma(0.5 * d_z)
gs = 2 * gamma(0.5 * (d_s+1)) / gamma(0.5 * d_s)
zz = K_hcv(z, z, gamma= 1. / (2. * gz))
ss = K_hcv(s, s, gamma= 1. / (2. * gs))
hsic = 0
hsic += tf.reduce_mean(zz * ss)
hsic += tf.reduce_mean(zz) * tf.reduce_mean(ss)
hsic -= 2 * tf.reduce_mean( tf.reduce_mean(zz, axis=1) * tf.reduce_mean(ss, axis=1) )
return tf.sqrt(hsic)
Z = gaussian_sample(self.mu,self.log_var)
return hsic_objective(Z,Z)
def kl_loss(y_true, y_pred):
return 0.5 * K.sum(K.exp(self.log_var) + K.square(self.mu) - 1. - self.log_var, axis=1)
def kl_loss_monitor0(y_true, y_pred):
klds = K.mean(K.exp(self.log_var) + K.square(self.mu) - 1. - self.log_var, axis=0)
return klds[0]
def kl_loss_monitor1(y_true, y_pred):
klds = K.mean(K.exp(self.log_var) + K.square(self.mu) - 1. - self.log_var, axis=0)
#K.print_tensor(klds)
return klds[1]
def kl_loss_monitor2(y_true, y_pred):
klds = K.mean(K.exp(self.log_var) + K.square(self.mu) - 1. - self.log_var, axis=0)
#K.print_tensor(klds)
return klds[2]
def kl_loss_monitor3(y_true, y_pred):
klds = K.mean(K.exp(self.log_var) + K.square(self.mu) - 1. - self.log_var, axis=0)
#K.print_tensor(klds)
return klds[3]
def kl_loss_monitor4(y_true, y_pred):
klds = K.mean(K.exp(self.log_var) + K.square(self.mu) - 1. - self.log_var, axis=0)
#K.print_tensor(klds)
return klds[4]
def recon_loss(y_true, y_pred):
return 0.5 * K.sum(K.square((y_true - y_pred)), axis=1)
self.vae_optimizer = keras.optimizers.Adam(lr=self.learning_rate,clipvalue=0.5)
self.vae_model.compile(optimizer=self.vae_optimizer, loss=vae_loss,
metrics=[HSIC,kl_loss ,recon_loss,kl_loss_monitor0,kl_loss_monitor1,kl_loss_monitor2,kl_loss_monitor3,
kl_loss_monitor4])
def to_latent(self, data):
"""
Map `data` in to the latent space. This function will feed data
in encoder part of VAE and compute the latent space coordinates
for each sample in data.
Parameters
----------
data: numpy nd-array
Numpy nd-array to be mapped to latent space. `data.X` has to be in shape [n_obs, n_vars].
Returns
-------
latent: numpy nd-array
Returns array containing latent space encoding of 'data'
"""
latent = self.encoder_model.predict(data)
return latent
def _avg_vector(self, data):
"""
Computes the average of points which computed from mapping `data`
to encoder part of VAE.
Parameters
----------
data: numpy nd-array
Numpy nd-array matrix to be mapped to latent space. Note that `data.X` has to be in shape [n_obs, n_vars].
Returns
-------
The average of latent space mapping in numpy nd-array.
"""
latent = self.to_latent(data)
latent_avg = numpy.average(latent, axis=0)
return latent_avg
def reconstruct(self, data):
"""
Map back the latent space encoding via the decoder.
Parameters
----------
data: `~anndata.AnnData`
Annotated data matrix whether in latent space or gene expression space.
use_data: bool
This flag determines whether the `data` is already in latent space or not.
if `True`: The `data` is in latent space (`data.X` is in shape [n_obs, z_dim]).
if `False`: The `data` is not in latent space (`data.X` is in shape [n_obs, n_vars]).
Returns
-------
rec_data: 'numpy nd-array'
Returns 'numpy nd-array` containing reconstructed 'data' in shape [n_obs, n_vars].
"""
rec_data = self.decoder_model.predict(x=data)
return rec_data
def linear_interpolation(self, source_adata, dest_adata, n_steps):
"""
Maps `source_adata` and `dest_adata` into latent space and linearly interpolate
`n_steps` points between them.
Parameters
----------
source_adata: `~anndata.AnnData`
Annotated data matrix of source cells in gene expression space (`x.X` must be in shape [n_obs, n_vars])
dest_adata: `~anndata.AnnData`
Annotated data matrix of destinations cells in gene expression space (`y.X` must be in shape [n_obs, n_vars])
n_steps: int
Number of steps to interpolate points between `source_adata`, `dest_adata`.
Returns
-------
interpolation: numpy nd-array
Returns the `numpy nd-array` of interpolated points in gene expression space.
Example
--------
>>> import anndata
>>> import scgen
>>> train_data = anndata.read("./data/train.h5ad")
>>> validation_data = anndata.read("./data/validation.h5ad")
>>> network = scgen.VAEArith(x_dimension= train_data.shape[1], model_path="./models/test" )
>>> network.train(train_data=train_data, use_validation=True, validation_data=validation_data, shuffle=True, n_epochs=2)
>>> souece = train_data[((train_data.obs["cell_type"] == "CD8T") & (train_data.obs["condition"] == "control"))]
>>> destination = train_data[((train_data.obs["cell_type"] == "CD8T") & (train_data.obs["condition"] == "stimulated"))]
>>> interpolation = network.linear_interpolation(souece, destination, n_steps=25)
"""
if sparse.issparse(source_adata.X):
source_average = source_adata.X.A.mean(axis=0).reshape((1, source_adata.shape[1]))
else:
source_average = source_adata.X.A.mean(axis=0).reshape((1, source_adata.shape[1]))
if sparse.issparse(dest_adata.X):
dest_average = dest_adata.X.A.mean(axis=0).reshape((1, dest_adata.shape[1]))
else:
dest_average = dest_adata.X.A.mean(axis=0).reshape((1, dest_adata.shape[1]))
start = self.to_latent(source_average)
end = self.to_latent(dest_average)
vectors = numpy.zeros((n_steps, start.shape[1]))
alpha_values = numpy.linspace(0, 1, n_steps)
for i, alpha in enumerate(alpha_values):
vector = start * (1 - alpha) + end * alpha
vectors[i, :] = vector
vectors = numpy.array(vectors)
interpolation = self.reconstruct(vectors)
return interpolation
def predict(self, adata, conditions, cell_type_key, condition_key, adata_to_predict=None, celltype_to_predict=None, obs_key="all"):
"""
Predicts the cell type provided by the user in stimulated condition.
Parameters
----------
celltype_to_predict: basestring
The cell type you want to be predicted.
obs_key: basestring or dict
Dictionary of celltypes you want to be observed for prediction.
adata_to_predict: `~anndata.AnnData`
Adata for unpertubed cells you want to be predicted.
Returns
-------
predicted_cells: numpy nd-array
`numpy nd-array` of predicted cells in primary space.
delta: float
Difference between stimulated and control cells in latent space
Example
--------
>>> import anndata
>>> import scgen
>>> train_data = anndata.read("./data/train.h5ad"
>>> validation_data = anndata.read("./data/validation.h5ad")
>>> network = scgen.VAEArith(x_dimension= train_data.shape[1], model_path="./models/test" )
>>> network.train(train_data=train_data, use_validation=True, validation_data=validation_data, shuffle=True, n_epochs=2)
>>> prediction, delta = pred, delta = scg.predict(adata= train_new,conditions={"ctrl": "control", "stim":"stimulated"},
cell_type_key="cell_type",condition_key="condition",adata_to_predict=unperturbed_cd4t)
"""
if obs_key == "all":
ctrl_x = adata[adata.obs["condition"] == conditions["ctrl"], :]
stim_x = adata[adata.obs["condition"] == conditions["stim"], :]
ctrl_x = ul.balancer(ctrl_x, cell_type_key=cell_type_key, condition_key=condition_key)
stim_x = ul.balancer(stim_x, cell_type_key=cell_type_key, condition_key=condition_key)
else:
key = list(obs_key.keys())[0]
values = obs_key[key]
subset = adata[adata.obs[key].isin(values)]
ctrl_x = subset[subset.obs["condition"] == conditions["ctrl"], :]
stim_x = subset[subset.obs["condition"] == conditions["stim"], :]
if len(values) > 1:
ctrl_x = ul.balancer(ctrl_x, cell_type_key=cell_type_key, condition_key=condition_key)
stim_x = ul.balancer(stim_x, cell_type_key=cell_type_key, condition_key=condition_key)
if celltype_to_predict is not None and adata_to_predict is not None:
raise Exception("Please provide either a cell type or adata not both!")
if celltype_to_predict is None and adata_to_predict is None:
raise Exception("Please provide a cell type name or adata for your unperturbed cells")
if celltype_to_predict is not None:
ctrl_pred = ul.extractor(adata, celltype_to_predict, conditions, cell_type_key, condition_key)[1]
else:
ctrl_pred = adata_to_predict
eq = min(ctrl_x.X.shape[0], stim_x.X.shape[0])
cd_ind = numpy.random.choice(range(ctrl_x.shape[0]), size=eq, replace=False)
stim_ind = numpy.random.choice(range(stim_x.shape[0]), size=eq, replace=False)
if sparse.issparse(ctrl_x.X) and sparse.issparse(stim_x.X):
latent_ctrl = self._avg_vector(ctrl_x.X.A[cd_ind, :])
latent_sim = self._avg_vector(stim_x.X.A[stim_ind, :])
else:
latent_ctrl = self._avg_vector(ctrl_x.X[cd_ind, :])
latent_sim = self._avg_vector(stim_x.X[stim_ind, :])
delta = latent_sim - latent_ctrl
if sparse.issparse(ctrl_pred.X):
latent_cd = self.to_latent(ctrl_pred.X.A)
else:
latent_cd = self.to_latent(ctrl_pred.X)
stim_pred = delta + latent_cd
predicted_cells = self.reconstruct(stim_pred)
return predicted_cells, delta
def restore_model(self):
"""K.variable(value=0.0)
restores model weights from `model_to_use`.
Parameters
----------
No parameters are needed.
Returns
-------
Nothing will be returned.
Example
--------
>>> import anndata
>>> import scgen
>>> train_data = anndata.read("./data/train.h5ad")
>>> validation_data = anndata.read("./data/validation.h5ad")
>>> network = scgen.VAEArith(x_dimension= train_data.shape[1], model_path="./models/test" )
>>> network.restore_model()
"""
self.vae_model = load_model(os.path.join(self.model_to_use, 'vae.h5'), compile=False)
self.encoder_model = load_model(os.path.join(self.model_to_use, 'encoder.h5'), compile=False)
self.decoder_model = load_model(os.path.join(self.model_to_use, 'decoder.h5'), compile=False)
self._loss_function()
def train(self, train_data, validation_data=None,
n_epochs=25,
batch_size=32,
early_stop_limit=20,
threshold=0.0025,
initial_run=True,
shuffle=True,
verbose=1,
save=True,
checkpoint=50,
**kwargs):
"""
Trains the network `n_epochs` times with given `train_data`
and validates the model using validation_data if it was given
in the constructor function. This function is using `early stopping`
technique to prevent over-fitting.
Parameters
----------
train_data: scanpy AnnData
Annotated Data Matrix for training VAE network.
validation_data: scanpy AnnData
Annotated Data Matrix for validating VAE network after each epoch.
n_epochs: int
Number of epochs to iterate and optimize network weights
batch_size: integer
size of each batch of training dataset to be fed to network while training.
early_stop_limit: int
Number of consecutive epochs in which network loss is not going lower.
After this limit, the network will stop training.
threshold: float
Threshold for difference between consecutive validation loss values
if the difference is upper than this `threshold`, this epoch will not
considered as an epoch in early stopping.
initial_run: bool
if `True`: The network will initiate training and log some useful initial messages.
if `False`: Network will resume the training using `restore_model` function in order
to restore last model which has been trained with some training dataset.
shuffle: bool
if `True`: shuffles the training dataset
Returns
-------
Nothing will be returned
Example
--------
```python
import anndata
import scgen
train_data = anndata.read("./data/train.h5ad"
validation_data = anndata.read("./data/validation.h5ad"
network = scgen.VAEArith(x_dimension= train_data.shape[1], model_path="./models/test")
network.train(train_data=train_data, use_validation=True, valid_data=validation_data, shuffle=True, n_epochs=2)
```
"""
if initial_run:
log.info("----Training----")
if shuffle:
train_data = ul.shuffle_adata(train_data)
if sparse.issparse(train_data.X):
train_data.X = train_data.X.A
# def on_epoch_end(epoch, logs):
# if epoch % checkpoint == 0:
# path_to_save = os.path.join(kwargs.get("path_to_save"), f"epoch_{epoch}") + "/"
# scgen.visualize_trained_network_results(self, vis_data, kwargs.get("cell_type"),
# kwargs.get("conditions"),
# kwargs.get("condition_key"), kwargs.get("cell_type_key"),
# path_to_save,
# plot_umap=False,
# plot_reg=True)
# class MyCustomCallback(keras.callbacks.Callback):
# def on_epoch_begin(self, epoch, logs=None):
# K.set_value(self.c_current, (self.c_max/n_epochs)* epoch)
# print("Setting C to =", str(self.c_current))
# print("Changed1")
os.makedirs(self.model_to_use, exist_ok=True)
'''
def update_val_c(epoch):
print(epoch)
value = (self.c_max/n_epochs)+K.get_value(self.c_current)
K.set_value(self.c_current,value)
'''
callbacks = [
#LambdaCallback(on_epoch_end=lambda epoch, log: update_val_c(epoch)),
# EarlyStopping(patience=early_stop_limit, monitor='loss', min_delta=threshold),
CSVLogger(filename=self.model_to_use+"/csv_logger.log"),
ModelCheckpoint('model_checkpoint.h5',monitor='vae_loss',verbose=1),
EarlyStopping(monitor='vae_loss',patience=5,verbose=1)
]
#K.set_value(self.c_current,(self.c_max/n_epochs))
if validation_data is not None:
result = self.vae_model.fit(x=train_data.X,
y=train_data.X,
epochs=n_epochs,
batch_size=batch_size,
validation_data=(validation_data.X, validation_data.X),
shuffle=shuffle,
callbacks=callbacks,
verbose=verbose)
else:
result = self.vae_model.fit(x=train_data.X,
y=train_data.X,
epochs=n_epochs,
batch_size=batch_size,
shuffle=shuffle,
callbacks=callbacks,
verbose=verbose)
if save is True:
#os.chdir(self.model_to_use)
self.vae_model.save(os.path.join(self.model_to_use+"/vae.h5"), overwrite=True)
self.encoder_model.save(os.path.join(self.model_to_use+"/encoder.h5"), overwrite=True)
self.decoder_model.save(os.path.join(self.model_to_use+"/decoder.h5"), overwrite=True)
log.info(f"Models are saved in file: {self.model_to_use}. Training finished")
return result