Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added RetinaNet paper and a few empty lines #71

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ To get the news for newly released papers everyday, follow my [twitter](https://
4. Please refer to *New Papers* and *Old Papers* sections for the papers published in recent 6 months or before 2012.

*(Citation criteria)*

- **< 6 months** : *New Papers* (by discussion)
- **2016** : +60 citations or "More Papers from 2016"
- **2015** : +200 citations
Expand Down Expand Up @@ -210,6 +211,8 @@ If you have any suggestions (missing papers, new papers, key researchers or typo

### New papers
*Newly published papers (< 6 months) which are worth reading*

- Focal Loss for Dense Object Detection (2017), T.-Y. Lin et al. [[pdf]](https://arxiv.org/abs/1708.02002)
- MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (2017), Andrew G. Howard et al. [[pdf]](https://arxiv.org/pdf/1704.04861.pdf)
- Convolutional Sequence to Sequence Learning (2017), Jonas Gehring et al. [[pdf]](https://arxiv.org/pdf/1705.03122)
- A Knowledge-Grounded Neural Conversation Model (2017), Marjan Ghazvininejad et al. [[pdf]](https://arxiv.org/pdf/1702.01932)
Expand All @@ -230,6 +233,7 @@ If you have any suggestions (missing papers, new papers, key researchers or typo

### Old Papers
*Classic papers published before 2012*

- An analysis of single-layer networks in unsupervised feature learning (2011), A. Coates et al. [[pdf]](http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_CoatesNL11.pdf)
- Deep sparse rectifier neural networks (2011), X. Glorot et al. [[pdf]](http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_GlorotBB11.pdf)
- Natural language processing (almost) from scratch (2011), R. Collobert et al. [[pdf]](http://arxiv.org/pdf/1103.0398)
Expand All @@ -249,6 +253,7 @@ If you have any suggestions (missing papers, new papers, key researchers or typo


### HW / SW / Dataset

- SQuAD: 100,000+ Questions for Machine Comprehension of Text (2016), Rajpurkar et al. [[pdf]](https://arxiv.org/pdf/1606.05250.pdf)
- OpenAI gym (2016), G. Brockman et al. [[pdf]](https://arxiv.org/pdf/1606.01540)
- TensorFlow: Large-scale machine learning on heterogeneous distributed systems (2016), M. Abadi et al. [[pdf]](http://arxiv.org/pdf/1603.04467)
Expand All @@ -260,6 +265,7 @@ If you have any suggestions (missing papers, new papers, key researchers or typo


### Book / Survey / Review

- On the Origin of Deep Learning (2017), H. Wang and Bhiksha Raj. [[pdf]](https://arxiv.org/pdf/1702.07800)
- Deep Reinforcement Learning: An Overview (2017), Y. Li, [[pdf]](http://arxiv.org/pdf/1701.07274v2.pdf)
- Neural Machine Translation and Sequence-to-sequence Models(2017): A Tutorial, G. Neubig. [[pdf]](http://arxiv.org/pdf/1703.01619v1.pdf)
Expand All @@ -274,18 +280,21 @@ If you have any suggestions (missing papers, new papers, key researchers or typo
### Video Lectures / Tutorials / Blogs

*(Lectures)*

- CS231n, Convolutional Neural Networks for Visual Recognition, Stanford University [[web]](http://cs231n.stanford.edu/)
- CS224d, Deep Learning for Natural Language Processing, Stanford University [[web]](http://cs224d.stanford.edu/)
- Oxford Deep NLP 2017, Deep Learning for Natural Language Processing, University of Oxford [[web]](https://github.com/oxford-cs-deepnlp-2017/lectures)

*(Tutorials)*

- NIPS 2016 Tutorials, Long Beach [[web]](https://nips.cc/Conferences/2016/Schedule?type=Tutorial)
- ICML 2016 Tutorials, New York City [[web]](http://techtalks.tv/icml/2016/tutorials/)
- ICLR 2016 Videos, San Juan [[web]](http://videolectures.net/iclr2016_san_juan/)
- Deep Learning Summer School 2016, Montreal [[web]](http://videolectures.net/deeplearning2016_montreal/)
- Bay Area Deep Learning School 2016, Stanford [[web]](https://www.bayareadlschool.org/)

*(Blogs)*

- OpenAI [[web]](https://www.openai.com/)
- Distill [[web]](http://distill.pub/)
- Andrej Karpathy Blog [[web]](http://karpathy.github.io/)
Expand All @@ -296,6 +305,7 @@ If you have any suggestions (missing papers, new papers, key researchers or typo

### Appendix: More than Top 100
*(2016)*

- A character-level decoder without explicit segmentation for neural machine translation (2016), J. Chung et al. [[pdf]](https://arxiv.org/pdf/1603.06147)
- Dermatologist-level classification of skin cancer with deep neural networks (2017), A. Esteva et al. [[html]](http://www.nature.com/nature/journal/v542/n7639/full/nature21056.html)
- Weakly supervised object localization with multi-fold multiple instance learning (2017), R. Gokberk et al. [[pdf]](https://arxiv.org/pdf/1503.00949)
Expand Down Expand Up @@ -324,6 +334,7 @@ If you have any suggestions (missing papers, new papers, key researchers or typo
- Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics (2016), Yee Whye Teh et al. [[pdf]](http://www.jmlr.org/papers/volume17/teh16a/teh16a.pdf)

*(2015)*

- Ask your neurons: A neural-based approach to answering questions about images (2015), M. Malinowski et al. [[pdf]](http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Malinowski_Ask_Your_Neurons_ICCV_2015_paper.pdf)
- Exploring models and data for image question answering (2015), M. Ren et al. [[pdf]](http://papers.nips.cc/paper/5640-stochastic-variational-inference-for-hidden-markov-models.pdf)
- Are you talking to a machine? dataset and methods for multilingual image question (2015), H. Gao et al. [[pdf]](http://papers.nips.cc/paper/5641-are-you-talking-to-a-machine-dataset-and-methods-for-multilingual-image-question.pdf)
Expand Down Expand Up @@ -358,6 +369,7 @@ If you have any suggestions (missing papers, new papers, key researchers or typo


*(~2014)*

- DeepPose: Human pose estimation via deep neural networks (2014), A. Toshev and C. Szegedy [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Toshev_DeepPose_Human_Pose_2014_CVPR_paper.pdf)
- Learning a Deep Convolutional Network for Image Super-Resolution (2014, C. Dong et al. [[pdf]](https://www.researchgate.net/profile/Chen_Change_Loy/publication/264552416_Lecture_Notes_in_Computer_Science/links/53e583e50cf25d674e9c280e.pdf)
- Recurrent models of visual attention (2014), V. Mnih et al. [[pdf]](http://arxiv.org/pdf/1406.6247.pdf)
Expand Down