-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
da1c355
commit 5f8859b
Showing
4 changed files
with
188 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -13,3 +13,5 @@ lit | |
pybind11 | ||
pytest | ||
transformers | ||
fsspec | ||
einops |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
# SPDX-FileCopyrightText: (c) 2025 Tenstorrent AI ULC | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# This file incorporates work covered by the following copyright and permission | ||
# notice: | ||
# SPDX-FileCopyrightText: Copyright 2024 Google LLC. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# This code is based on google-research/vision_transformer | ||
|
||
from typing import Any, Optional | ||
|
||
import einops | ||
import flax.linen as nn | ||
import jax.numpy as jnp | ||
import jax | ||
|
||
|
||
class MlpBlock(nn.Module): | ||
mlp_dim: int | ||
|
||
@nn.compact | ||
def __call__(self, x: jax.Array) -> jax.Array: | ||
y = nn.Dense(self.mlp_dim)(x) | ||
y = nn.gelu(y) | ||
return nn.Dense(x.shape[-1])(y) | ||
|
||
|
||
class MixerBlock(nn.Module): | ||
"""Mixer block layer.""" | ||
|
||
tokens_mlp_dim: int | ||
channels_mlp_dim: int | ||
|
||
@nn.compact | ||
def __call__(self, x: jax.Array) -> jax.Array: | ||
y = nn.LayerNorm()(x) | ||
y = jnp.swapaxes(y, 1, 2) | ||
y = MlpBlock(self.tokens_mlp_dim, name="token_mixing")(y) | ||
y = jnp.swapaxes(y, 1, 2) | ||
x = x + y | ||
|
||
y = nn.LayerNorm()(x) | ||
y = MlpBlock(self.channels_mlp_dim, name="channel_mixing")(y) | ||
y = x + y | ||
|
||
return y | ||
|
||
|
||
class MlpMixer(nn.Module): | ||
"""Mixer architecture.""" | ||
|
||
patches: Any | ||
num_classes: int | ||
num_blocks: int | ||
hidden_dim: int | ||
tokens_mlp_dim: int | ||
channels_mlp_dim: int | ||
model_name: Optional[str] = None | ||
|
||
@nn.compact | ||
def __call__(self, inputs: jax.Array) -> jax.Array: | ||
x = nn.Conv( | ||
self.hidden_dim, self.patches.size, strides=self.patches.size, name="stem" | ||
)( | ||
inputs | ||
) # Patch embedding | ||
x = einops.rearrange(x, "n h w c -> n (h w) c") | ||
|
||
for _ in range(self.num_blocks): | ||
x = MixerBlock(self.tokens_mlp_dim, self.channels_mlp_dim)(x) | ||
|
||
x = nn.LayerNorm(name="pre_head_layer_norm")(x) | ||
x = jnp.mean(x, axis=1) | ||
|
||
if self.num_classes: | ||
x = nn.Dense( | ||
self.num_classes, kernel_init=nn.initializers.zeros, name="head" | ||
)(x) | ||
|
||
return x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
# SPDX-FileCopyrightText: (c) 2025 Tenstorrent AI ULC | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Any, Dict, Sequence | ||
|
||
import flax.traverse_util | ||
import fsspec | ||
import jax | ||
import jax.numpy as jnp | ||
import numpy | ||
import pytest | ||
from flax import linen as nn | ||
from infra import ModelTester, RunMode | ||
|
||
from .model_implementation import MlpMixer | ||
|
||
# Hyperparameters for Mixer-B/16 | ||
patch_size = 16 | ||
num_classes = 21843 | ||
num_blocks = 12 | ||
hidden_dim = 768 | ||
token_mlp_dim = 384 | ||
channel_mlp_dim = 3072 | ||
|
||
|
||
class MlpMixerTester(ModelTester): | ||
"""Tester for MlpMixer model.""" | ||
|
||
# @override | ||
def _get_model(self) -> nn.Module: | ||
patch = jnp.ones((patch_size, patch_size)) | ||
return MlpMixer( | ||
patches=patch, | ||
num_classes=num_classes, | ||
num_blocks=num_blocks, | ||
hidden_dim=hidden_dim, | ||
tokens_mlp_dim=token_mlp_dim, | ||
channels_mlp_dim=channel_mlp_dim, | ||
) | ||
|
||
@staticmethod | ||
def _retrieve_pretrained_weights() -> Dict: | ||
# TODO(stefan): Discuss how weights should be handled org wide | ||
link = "https://storage.googleapis.com/mixer_models/imagenet21k/Mixer-B_16.npz" | ||
with fsspec.open("filecache::" + link, cache_storage="/tmp/files/") as f: | ||
weights = numpy.load(f, encoding="bytes") | ||
state_dict = {k: v for k, v in weights.items()} | ||
pytree = flax.traverse_util.unflatten_dict(state_dict, sep="/") | ||
return {"params": pytree} | ||
|
||
# @override | ||
def _get_forward_method_name(self) -> str: | ||
return "apply" | ||
|
||
# @override | ||
def _get_input_activations(self) -> jax.Array: | ||
key = jax.random.PRNGKey(42) | ||
random_image = jax.random.normal(key, (1, 196, 196, 3)) | ||
return random_image | ||
|
||
# @override | ||
def _get_forward_method_args(self) -> Sequence[Any]: | ||
ins = self._get_input_activations() | ||
weights = self._retrieve_pretrained_weights() | ||
|
||
# Required to bypass "Initializer expected to generate shape (16, 16, 3, 768) but got shape (256, 3, 768)" | ||
kernel = weights["params"]["stem"]["kernel"] | ||
kernel = kernel.reshape(-1, 3, hidden_dim) | ||
weights["params"]["stem"]["kernel"] = kernel | ||
|
||
# Alternatively, weights could be randomly initialized like this: | ||
# weights = self._model.init(jax.random.PRNGKey(42), ins) | ||
|
||
# JAX frameworks have a convention of passing weights as the first argument | ||
return [weights, ins] | ||
|
||
|
||
# ----- Fixtures ----- | ||
|
||
|
||
@pytest.fixture | ||
def inference_tester() -> MlpMixerTester: | ||
return MlpMixerTester() | ||
|
||
|
||
@pytest.fixture | ||
def training_tester() -> MlpMixerTester: | ||
return MlpMixerTester(RunMode.TRAINING) | ||
|
||
|
||
# ----- Tests ----- | ||
|
||
|
||
@pytest.mark.skip( | ||
reason="error: failed to legalize operation 'ttir.convolution' that was explicitly marked illegal" | ||
) | ||
def test_mlpmixer(inference_tester: MlpMixerTester): | ||
inference_tester.test() | ||
|
||
|
||
@pytest.mark.skip(reason="Support for training not implemented") | ||
def test_mlpmixer_training(training_tester: MlpMixerTester): | ||
training_tester.test() |