Skip to content

Update example template models not to use deprecated Keras APIs #7723

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
139 changes: 57 additions & 82 deletions tfx/experimental/templates/taxi/models/keras_model/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,98 +106,73 @@ def _build_keras_model(hidden_units, learning_rate):
Returns:
A keras Model.
"""
real_valued_columns = [
tf.feature_column.numeric_column(key, shape=())
for key in features.transformed_names(features.DENSE_FLOAT_FEATURE_KEYS)
]
categorical_columns = [
tf.feature_column.categorical_column_with_identity( # pylint: disable=g-complex-comprehension
key,
num_buckets=features.VOCAB_SIZE + features.OOV_SIZE,
default_value=0)
for key in features.transformed_names(features.VOCAB_FEATURE_KEYS)
]
categorical_columns += [
tf.feature_column.categorical_column_with_identity( # pylint: disable=g-complex-comprehension
key,
num_buckets=num_buckets,
default_value=0) for key, num_buckets in zip(
features.transformed_names(features.BUCKET_FEATURE_KEYS),
features.BUCKET_FEATURE_BUCKET_COUNT)
]
categorical_columns += [
tf.feature_column.categorical_column_with_identity( # pylint: disable=g-complex-comprehension
key,
num_buckets=num_buckets,
default_value=0) for key, num_buckets in zip(
features.transformed_names(features.CATEGORICAL_FEATURE_KEYS),
features.CATEGORICAL_FEATURE_MAX_VALUES)
]
indicator_column = [
tf.feature_column.indicator_column(categorical_column)
for categorical_column in categorical_columns
]

model = _wide_and_deep_classifier(
# TODO(b/140320729) Replace with premade wide_and_deep keras model
wide_columns=indicator_column,
deep_columns=real_valued_columns,
dnn_hidden_units=hidden_units,
learning_rate=learning_rate)
return model


def _wide_and_deep_classifier(wide_columns, deep_columns, dnn_hidden_units,
learning_rate):
"""Build a simple keras wide and deep model.

Args:
wide_columns: Feature columns wrapped in indicator_column for wide (linear)
part of the model.
deep_columns: Feature columns for deep part of the model.
dnn_hidden_units: [int], the layer sizes of the hidden DNN.
learning_rate: [float], learning rate of the Adam optimizer.

Returns:
A Wide and Deep Keras model
"""
# Keras needs the feature definitions at compile time.
# TODO(b/139081439): Automate generation of input layers from FeatureColumn.
input_layers = {
colname: tf.keras.layers.Input(name=colname, shape=(), dtype=tf.float32)
for colname in features.transformed_names(
features.DENSE_FLOAT_FEATURE_KEYS)
deep_input = {
colname: tf.keras.layers.Input(name=colname, shape=(1,), dtype=tf.float32)
for colname in features.transformed_names(features.DENSE_FLOAT_FEATURE_KEYS)
}
input_layers.update({
colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
wide_vocab_input = {
colname: tf.keras.layers.Input(name=colname, shape=(1,), dtype='int32')
for colname in features.transformed_names(features.VOCAB_FEATURE_KEYS)
})
input_layers.update({
colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
}
wide_bucket_input = {
colname: tf.keras.layers.Input(name=colname, shape=(1,), dtype='int32')
for colname in features.transformed_names(features.BUCKET_FEATURE_KEYS)
})
input_layers.update({
colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32') for
colname in features.transformed_names(features.CATEGORICAL_FEATURE_KEYS)
})

# TODO(b/161952382): Replace with Keras premade models and
# Keras preprocessing layers.
deep = tf.keras.layers.DenseFeatures(deep_columns)(input_layers)
for numnodes in dnn_hidden_units:
}
wide_categorical_input = {
colname: tf.keras.layers.Input(name=colname, shape=(1,), dtype='int32')
for colname in features.transformed_names(features.CATEGORICAL_FEATURE_KEYS)
}
input_layers = {
**deep_input,
**wide_vocab_input,
**wide_bucket_input,
**wide_categorical_input,
}

deep = tf.keras.layers.concatenate(
[tf.keras.layers.Normalization()(layer) for layer in deep_input.values()]
)
for numnodes in (hidden_units or [100, 70, 50, 25]):
deep = tf.keras.layers.Dense(numnodes)(deep)
wide = tf.keras.layers.DenseFeatures(wide_columns)(input_layers)

output = tf.keras.layers.Dense(
1, activation='sigmoid')(
tf.keras.layers.concatenate([deep, wide]))
output = tf.squeeze(output, -1)
wide_layers = []
for key in features.transformed_names(features.VOCAB_FEATURE_KEYS):
wide_layers.append(
tf.keras.layers.CategoryEncoding(num_tokens=features.VOCAB_SIZE + features.OOV_SIZE)(
input_layers[key]
)
)
for key, num_tokens in zip(
features.transformed_names(features.BUCKET_FEATURE_KEYS),
features.BUCKET_FEATURE_BUCKET_COUNT,
):
wide_layers.append(
tf.keras.layers.CategoryEncoding(num_tokens=num_tokens)(
input_layers[key]
)
)
for key, num_tokens in zip(
features.transformed_names(features.CATEGORICAL_FEATURE_KEYS),
features.CATEGORICAL_FEATURE_MAX_VALUES,
):
wide_layers.append(
tf.keras.layers.CategoryEncoding(num_tokens=num_tokens)(
input_layers[key]
)
)
wide = tf.keras.layers.concatenate(wide_layers)

output = tf.keras.layers.Dense(1, activation='sigmoid')(
tf.keras.layers.concatenate([deep, wide])
)
output = tf.keras.layers.Reshape((1,))(output)

model = tf.keras.Model(input_layers, output)
model.compile(
loss='binary_crossentropy',
optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
metrics=[tf.keras.metrics.BinaryAccuracy()])
metrics=[tf.keras.metrics.BinaryAccuracy()],
)
model.summary(print_fn=logging.info)
return model

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ class ModelTest(tf.test.TestCase):
def testBuildKerasModel(self):
built_model = model._build_keras_model(
hidden_units=[1, 1], learning_rate=0.1) # pylint: disable=protected-access
self.assertEqual(len(built_model.layers), 10)
self.assertEqual(len(built_model.layers), 13)

built_model = model._build_keras_model(hidden_units=[1], learning_rate=0.1) # pylint: disable=protected-access
self.assertEqual(len(built_model.layers), 9)
self.assertEqual(len(built_model.layers), 12)